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– Dynamic linked libraries with run-time binding as a convenient solution.
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Previous work with SU2: Adjoints & Multi-
Objective Optimization

• Multi-fidelity model with gradient information 
passed across isolator outlet boundary in 
order to compute continuous adjoint for 
functions dependent on the entire flowpath.

• Fluid-Structure Interaction
• Multi-objective continuous and discrete 

adjoints, reducing gradient cost by combining 
multiple functionals into a single adjoint 
evaluation.

– See multi-objective shape design tutorial Time to complete 2 optimizer 
iterations:
Combined (1 adjoint/step): 3m 10s
Separate (2 adjoint/step): 5m 35s
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Overview of boundary layer stability methods 
and contrast to empirical transition prediction.
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Slowly varying exponential growth

• eN methods predict perturbations of flow quantities resulting from a disturbance of a known 
frequency using linearizations of the Navier-Stokes equations and an assumed Fourrier 
series solution.

– LST: Linear/Local Stability Theory – assumes parallel flow and neglects nonlinear effects.
– PSE: Parabolized Stability Equations – includes nonparallel effects, neglects nonlinear effects.
– NPSE: Nonlinear Parabolized Stability Equations – requires amplitude of initial disturbance.

• ‘Semi-empirical’ due to need for a critical amplification/N-Factor.
– Critical N-Factor 4-6 common for wind tunnels, 8-15 for flight experiments.
– Reducing the N-Factor should delay transition even when the critical N-Factor is unknown.

Quickly varying periodic behavior
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Empirical Transition vs. Boundary Layer 
Stability

• Empirical Methods: Langtry-Menter, 
critical Reynolds numbers, 
Reynolds/Mach ratio

• Low computational cost.
• Straightforward implementation
• Valid only within the experimental data 

used to produce the empirical fits.
• No information about transition 

mechanisms.

• Boundary Layer Stability Analysis: 
e^N methods: LST, PSE, NPSE

• Physics-based, applicable to a wider 
range of conditions and provides 
information about transition mechanism.

• Higher computational cost; both in the 
analysis itself and requirements of the 
mean flow solutions.

• More information required in coupling –
and more available in results. 

• Some methods require, and all benefit 
from, knowledge of the disturbance 
environment.



Coupling eN and CFD for Design.

Lynde, Michelle N., et al. "Preliminary Results from an 
Experimental Assessment of a Natural Laminar Flow 
Design Method." AIAA Scitech 2019 Forum. 2019.

• Proposed project (led by Pedro Paredes at NIA): 
implement LST/PSE within SU2 for design 
optimization, using algorithmic differentiation to 
produce the discrete adjoint for use with natural 
laminar flow design.  

– Linear stability based methods are routinely employed 
for transition analysis, but has not yet been included 
in an adjoint-based optimization framework.

• Potential Challenges
– Entire boundary layer profiles needed, which must be 

along normals to the surface.
– Laminar flow solutions required for input to the LST.
– Interpolation likely to be required for transferring 

information to boundary layers.
– SU2 already has non-matching mesh tools that may 

be exploited for this purpose.
– Extrapolation of transition location on the surface to 

the volume, including intermittency, may be needed. 
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Motivations for linking to external (to SU2) tools 
and potential challenges.

• Motivations:
– Take advantage of fully-developed features in external codes
– Avoid licensing issues
– Flexibility to use multiple options
– Reduced maintenance requirements

• Challenges:
– Designing an efficient, flexible, and easy-to-use Application Programming Interface (API)
– No control over the content of the external code

• Possible Solutions:
– File I/O
– Python wrapper
– Compile-time linking to shared libraries
– Run-time linking to shared libraries



Dynamic linked/shared libraries with run-time 
binding as a convenient solution.

• No recompilation required:
– User specifies the path to their compiled library following API defined within SU2 – through an 

configuration file parameter or through an environment variable.
– SU2 tests whether the library exists, then binds a function call to that library.
– SU2 routines call the function as though it was internal.
– Output errors if the path is incorrect or if the API does not match.
– Can exist alongside with built-in functions.

• Well-thought out API necessary
• Computationally efficient – more expensive than built-in functions, less expensive than 

python wrapping
• Facilitates code-to-code comparison, collaborative/concurrent development
• Regression tests for the API only – minimal additional SU2 maintenance cost
• No SU2 changes required when external code is updated: the same executable can be 

used with multiple libraries
• Convenient for development of new features



Dynamic Linked/Shared Libraries

• Depends on: dlfnc.h 
• User compiles their function (or a wrapper to their function) as a 

dynamic linked/shared library (.so / .dll) with -shared and -fpic
• Path to the object can be specified in the configuration file
• C-based: no overloading, treats references as pointers

In SU2 (or other driver program)
#include dlfnc.h
… 
void *handle = dlopen(“path_to_compiled_object”, RTLD_LAZY);
int (*foo)(double*, int*)
foo = (int (*)(double*, int*))dlsym(handle,”foo”);
… 
int c = (*foo)(&a, &b);

In external program/wrapper 
extern “C” {

int foo(const double*, const int*);
}
… 
int foo (const double* a, const int* b){

… code code code
return c;

}



Adjoints and External Tools
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Thank you for your attention


