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* Previous work with SU2: Adjoints & Multi-Objective Optimization
« Multi-Physics Analysis Example: Boundary Layer Stability Analysis

— Overview of boundary layer stability methods and contrast to empirical
transition prediction.

— Coupling eN and CFD for Design.

* Coupling with external tools
— Motivations for linking to external (to SU2) tools and potential challenges.
— Dynamic linked libraries with run-time binding as a convenient solution.




* Previous work with SU2: Adjoints & Multi-Objective Optimization
* Multi-Physics Analysis Example: Boundary Layer Stability Analysis

— Overview of boundary layer stability methods and contrast to empirical
transition prediction.

— Coupling eN and CFD for Design.

* Coupling with external tools
— Motivations for linking to external (to SU2) tools and potential challenges.
— Dynamic linked libraries with run-time binding as a convenient solution.




Previous work with SU2: Adjoints & Multi-

Objective Optimization
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Previous work with SU2: Adjoints & Multi-Objective Optimization

Multi-Physics Analysis Example: Boundary Layer Stability
Analysis
— Overview of boundary layer stability methods and contrast to empirical
transition prediction.
— Coupling eN and CFD for Design.

Coupling with external tools

— Motivations for linking to external (to SU2) tools and potential
challenges.

— Dynamic linked libraries with run-time binding as a convenient solution.




Overview of boundary layer stability methods

and contrast to empirical transition prediction.

« eN methods predict perturbations of flow quantities resulting from a disturbance of a known
frequency using linearizations of the Navier-Stokes equations and an assumed Fourrier

series solution.
— LST: Linear/Local Stability Theory — assumes parallel flow and neglects nonlinear effects.
— PSE: Parabolized Stability Equations — includes nonparallel effects, neglects nonlinear effects.
— NPSE: Nonlinear Parabolized Stability Equations — requires amplitude of initial disturbance.

« ‘Semi-empirical’ due to need for a critical amplification/N-Factor.

— Critical N-Factor 4-6 common for wind tunnels, 8-15 for flight experiments.
— Reducing the N-Factor should delay transition even when the critical N-Factor is unknown.

Slowly varying exponential growth

Eigenvectors for

u’ perturbations of the
flow variables
through the
thickness of the
boundary layer

Laminar
boundary >
layer profile

Quickly varying periodic behavior




Empirical Transition vs. Boundary Layer

Stability

« Empirical Methods: Langtry-Menter,
critical Reynolds numbers,
Reynolds/Mach ratio

* Low computational cost.
« Straightforward implementation

« Valid only within the experimental data
used to produce the empirical fits.

 No information about transition
mechanisms.

Boundary Layer Stability Analysis:
e N methods: LST, PSE, NPSE

Physics-based, applicable to a wider
range of conditions and provides
information about transition mechanism.
Higher computational cost; both in the

analysis itself and requirements of the
mean flow solutions.

More information required in coupling —
and more available in results.

Some methods require, and all benefit
from, knowledge of the disturbance
environment.




Coupling eN and CFD for Design.

* Proposed project (led by Pedro Paredes at NIA):
implement LST/PSE within SU2 for design
optimization, using algorithmic differentiation to
produce the discrete adjoint for use with natural
laminar flow design.

— Linear stability based methods are routinely employed

for transition analysis, but has not yet been included
in an adjoint-based optimization framework.

« Potential Challenges

— Entire boundary layer profiles needed, which must be
along normals to the surface. P 16 milion

— Laminar flow solutions required for input to the LST. @=15deg

— Interpolation likely to be required for transferring
information to boundary layers.

— SU2 already has non-matching mesh tools that may Figure 32. TSP image with the approximated transition
be exploited for this purpose. front shown (red dashed line) from test condition M =0.86,

" ngw . — ° — — 1 3
— Extrapolation of transition location on the surface to Tr =40 °F, @ = 1.5 deg., and Remac = 15.0 million. The

th | including int itt b ded pretest CFD transition predictions at corresponding CFD
€ volume, Including Intermittency, may be needed. conditions for a critical N-factor of 6 is overlaid on the

image.
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Lynde, Michelle N., et al. "Preliminary Results from an
Experimental Assessment of a Natural Laminar Flow
Design Method." AIAA Scitech 2019 Forum. 2019.
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— Motivations for linking to external (to SU2) tools and potential
challenges.

— Dynamic linked/shared libraries with run-time binding as a convenient
solution.




Motivations for linking to external (to SU2) tools
and potential challenges.

* Motivations:
— Take advantage of fully-developed features in external codes
— Avoid licensing issues
— Flexibility to use multiple options
— Reduced maintenance requirements
« Challenges:
— Designing an efficient, flexible, and easy-to-use Application Programming Interface (API)
— No control over the content of the external code
» Possible Solutions:
— File 1/O
— Python wrapper
— Compile-time linking to shared libraries

— Run-time linking to shared libraries




Dynamic linked/shared libraries with run-time

binding as a convenient solution.

No recompilation required:

— User specifies the path to their compiled library following API defined within SU2 — through an
configuration file parameter or through an environment variable.

— SUZ2 tests whether the library exists, then binds a function call to that library.
— SU2 routines call the function as though it was internal.
— Output errors if the path is incorrect or if the APl does not match.

Can exist alongside with built-in functions.

WeII -thought out API necessary

Computationally efficient — more expensive than built-in functions, less expensive than
python wrapping

Facilitates code-to-code comparison, collaborative/concurrent development
Regression tests for the APl only — minimal additional SU2 maintenance cost

No SU2 changes required when external code is updated: the same executable can be
used with multiple libraries

Convenient for development of new features




Dynamic Linked/Shared Libraries

* Depends on: difnc.h

« User compiles their function (or a wrapper to their function) as a
dynamic linked/shared library (.so / .dll) with -shared and -fpic

« Path to the object can be specified in the configuration file
« (C-based: no overloading, treats references as pointers

In SU2 (or other driver program) In external program/wrapper

#include dlfnc.h extern “C” {
int foo(const double*, const int*);

void *handle = dlopen(“path_to_compiled_object’, RTLD_LAZY); ||}
int (*foo)(double*, int*)
foo = (int (*)(double*, int*))dIsym(handle,’fo0”); int foo (const double* a, const int* b){

... code code code
int ¢ = (*foo)(&a, &b); return c;
}




Adjoints and External Tools

The Jacobian of the
outputs with respect to
the function inputs will

be required by the
adjoint solution within
SuU2.
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Adjoints and External Tools

The Jacobian of the
outputs with respect to
the function inputs will
be required by the
adjoint solution within
SU2.
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Thank you for your attention




