
Multi-Physics Analysis and External Code
Compatibility

Dr. Heather Kline
National Institute of Aerospace

Agenda

• Previous work with SU2: Adjoints & Multi-Objective Optimization
• Multi-Physics Analysis Example: Boundary Layer Stability Analysis

– Overview of boundary layer stability methods and contrast to empirical
transition prediction.

– Coupling eN and CFD for Design.
• Coupling with external tools

– Motivations for linking to external (to SU2) tools and potential challenges.
– Dynamic linked libraries with run-time binding as a convenient solution.

Agenda

• Previous work with SU2: Adjoints & Multi-Objective Optimization
• Multi-Physics Analysis Example: Boundary Layer Stability Analysis

– Overview of boundary layer stability methods and contrast to empirical
transition prediction.

– Coupling eN and CFD for Design.
• Coupling with external tools

– Motivations for linking to external (to SU2) tools and potential challenges.
– Dynamic linked libraries with run-time binding as a convenient solution.

Previous work with SU2: Adjoints & Multi-
Objective Optimization

• Multi-fidelity model with gradient information
passed across isolator outlet boundary in
order to compute continuous adjoint for
functions dependent on the entire flowpath.

• Fluid-Structure Interaction
• Multi-objective continuous and discrete

adjoints, reducing gradient cost by combining
multiple functionals into a single adjoint
evaluation.

– See multi-objective shape design tutorial Time to complete 2 optimizer
iterations:
Combined (1 adjoint/step): 3m 10s
Separate (2 adjoint/step): 5m 35s

Agenda

• Previous work with SU2: Adjoints & Multi-Objective Optimization
• Multi-Physics Analysis Example: Boundary Layer Stability

Analysis
– Overview of boundary layer stability methods and contrast to empirical

transition prediction.
– Coupling eN and CFD for Design.

• Coupling with external tools
– Motivations for linking to external (to SU2) tools and potential

challenges.
– Dynamic linked libraries with run-time binding as a convenient solution.

Overview of boundary layer stability methods
and contrast to empirical transition prediction.

𝑒𝑥𝑝 $ −𝛼'

Slowly varying exponential growth

• eN methods predict perturbations of flow quantities resulting from a disturbance of a known
frequency using linearizations of the Navier-Stokes equations and an assumed Fourrier
series solution.

– LST: Linear/Local Stability Theory – assumes parallel flow and neglects nonlinear effects.
– PSE: Parabolized Stability Equations – includes nonparallel effects, neglects nonlinear effects.
– NPSE: Nonlinear Parabolized Stability Equations – requires amplitude of initial disturbance.

• ‘Semi-empirical’ due to need for a critical amplification/N-Factor.
– Critical N-Factor 4-6 common for wind tunnels, 8-15 for flight experiments.
– Reducing the N-Factor should delay transition even when the critical N-Factor is unknown.

Quickly varying periodic behavior

Eigenvectors for
perturbations of the
flow variables
through the
thickness of the
boundary layer

u u’
Laminar
boundary
layer profile

Empirical Transition vs. Boundary Layer
Stability

• Empirical Methods: Langtry-Menter,
critical Reynolds numbers,
Reynolds/Mach ratio

• Low computational cost.
• Straightforward implementation
• Valid only within the experimental data

used to produce the empirical fits.
• No information about transition

mechanisms.

• Boundary Layer Stability Analysis:
e^N methods: LST, PSE, NPSE

• Physics-based, applicable to a wider
range of conditions and provides
information about transition mechanism.

• Higher computational cost; both in the
analysis itself and requirements of the
mean flow solutions.

• More information required in coupling –
and more available in results.

• Some methods require, and all benefit
from, knowledge of the disturbance
environment.

Coupling eN and CFD for Design.

Lynde, Michelle N., et al. "Preliminary Results from an
Experimental Assessment of a Natural Laminar Flow
Design Method." AIAA Scitech 2019 Forum. 2019.

• Proposed project (led by Pedro Paredes at NIA):
implement LST/PSE within SU2 for design
optimization, using algorithmic differentiation to
produce the discrete adjoint for use with natural
laminar flow design.

– Linear stability based methods are routinely employed
for transition analysis, but has not yet been included
in an adjoint-based optimization framework.

• Potential Challenges
– Entire boundary layer profiles needed, which must be

along normals to the surface.
– Laminar flow solutions required for input to the LST.
– Interpolation likely to be required for transferring

information to boundary layers.
– SU2 already has non-matching mesh tools that may

be exploited for this purpose.
– Extrapolation of transition location on the surface to

the volume, including intermittency, may be needed.

Agenda

• Previous work with SU2: Adjoints & Multi-Objective Optimization
• Multi-Physics Analysis Example: Boundary Layer Stability Analysis

– Overview of boundary layer stability methods and contrast to empirical
transition prediction.

– Coupling eN and CFD for Design.
• Coupling with external tools

– Motivations for linking to external (to SU2) tools and potential
challenges.

– Dynamic linked/shared libraries with run-time binding as a convenient
solution.

Motivations for linking to external (to SU2) tools
and potential challenges.

• Motivations:
– Take advantage of fully-developed features in external codes
– Avoid licensing issues
– Flexibility to use multiple options
– Reduced maintenance requirements

• Challenges:
– Designing an efficient, flexible, and easy-to-use Application Programming Interface (API)
– No control over the content of the external code

• Possible Solutions:
– File I/O
– Python wrapper
– Compile-time linking to shared libraries
– Run-time linking to shared libraries

Dynamic linked/shared libraries with run-time
binding as a convenient solution.

• No recompilation required:
– User specifies the path to their compiled library following API defined within SU2 – through an

configuration file parameter or through an environment variable.
– SU2 tests whether the library exists, then binds a function call to that library.
– SU2 routines call the function as though it was internal.
– Output errors if the path is incorrect or if the API does not match.
– Can exist alongside with built-in functions.

• Well-thought out API necessary
• Computationally efficient – more expensive than built-in functions, less expensive than

python wrapping
• Facilitates code-to-code comparison, collaborative/concurrent development
• Regression tests for the API only – minimal additional SU2 maintenance cost
• No SU2 changes required when external code is updated: the same executable can be

used with multiple libraries
• Convenient for development of new features

Dynamic Linked/Shared Libraries

• Depends on: dlfnc.h
• User compiles their function (or a wrapper to their function) as a

dynamic linked/shared library (.so / .dll) with -shared and -fpic
• Path to the object can be specified in the configuration file
• C-based: no overloading, treats references as pointers

In SU2 (or other driver program)
#include dlfnc.h
…
void *handle = dlopen(“path_to_compiled_object”, RTLD_LAZY);
int (*foo)(double*, int*)
foo = (int (*)(double*, int*))dlsym(handle,”foo”);
…
int c = (*foo)(&a, &b);

In external program/wrapper
extern “C” {

int foo(const double*, const int*);
}
…
int foo (const double* a, const int* b){

… code code code
return c;

}

Adjoints and External Tools

Direction Solution External Function

Adjoint of
External FunctionAdjoint Solution

𝜕 ⁄𝐽 𝜕 𝑈

𝜕 ⁄𝐽 𝜕 𝑆

𝑈

𝐽𝑈

The Jacobian of the
outputs with respect to
the function inputs will
be required by the
adjoint solution within
SU2.

Optimization routines

Adjoints and External Tools

Direction Solution External Function

Adjoint of
External FunctionAdjoint Solution

𝜕 ⁄𝐽 𝜕 𝑈

𝜕 ⁄𝐽 𝜕 𝑆

𝑈

𝐽𝑈

The Jacobian of the
outputs with respect to
the function inputs will
be required by the
adjoint solution within
SU2.

APIs needed here

Optimization routines

Thank you for your attention

