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1. Part – I
– Modelling Helicopters in 

Forward Flight

– Implementation within SU2

2. Part – II
– Numerical Results of Icing 

Simulations

OUTLINE
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Air Zermatt helicopter just before a rescue. - © Air Zermatt. 
Available at: https://www.zermatt.ch/en/Media/Attractions/Air-Zermatt



ROTORCRAFT ICING ENVIRONMENT
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• Severely damaging consequences and a threat to 
flight safety

• Icing on the main rotor alters the blade geometry

Source: BBC NEWS, Mar 2nd 2006

SAC Faye Storer, (2013), Royal Air Force Search and Rescue helicopter with D Flight 202 Squadron. 
Available at: http://www.defenceimagery.mod.uk/fotoweb/fwbin/download.dll/45153802.jpg



CURRENT RESEARCH METHODS
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Source: J. D. Lee, R. Harding, and R. L. Palko, Documentation of ice shapes on the main 
rotor of a uh-1h helicopter in hover, 1984.

Source: NASA, https://www1.grc.nasa.gov/aeronautics/icing/rotorcraft-icing/

Source: NASA, https://www1.grc.nasa.gov/aeronautics/icing/rotorcraft-icing/

• Certification for icing demanding/expensive 

• FIPS Part 29-C EASA/FAA

• Rigorous testing of main/tail rotors

• Data for certification can come from many 

sources: in-flight or experimental



• In forward flight, experience a blade normal velocity which depends on the azimuthal 
position

• The differences in the blade normal velocities combined with the requirement that the 
rotor does not produce pitching or rolling moments is the main challenge. 

• Flapping hinge introduced eliminating the rolling moment which arises in forward flight. 
Flapping causes large Coriolis moments in the plane of rotation and the lag hinge is 
provided to relieve these moments. Lastly the pitching hinge allows the blade to be 
pitched. 

MODELLING FORWARD FLIGHT
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MODELLING FORWARD FLIGHT
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• Helicopters in level forward flight involves the following unknowns:
• Collective pitch
• Cyclic pitch
• Flapping and lead-lag harmonics
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Volumetric movement for rotation

Surface movement for blade kinematics
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MODELLING FORWARD FLIGHT

12

Steijl, R., G. Barakos, and K. Badcock. "A framework for CFD analysis of helicopter rotors in hover and forward flight." International journal for numerical methods in fluids 51.8 
(2006): 819-847.
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ψ =0°

ψ =90° ψ =270°

ψ =180°



CONFIGURATION FILE
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% ----------------------- DYNAMIC MESH DEFINITION -----------------------------%
%
% Dynamic mesh simulation (NO, YES)
GRID_MOVEMENT= YES
%
% Type of mesh motion (NONE, FLUTTER, RIGID_MOTION, FLUID_STRUCTURE,          
% ROTORCRAFT)
GRID_MOVEMENT_KIND= ROTORCRAFT
%
% Definition of coordinate system. Defined by which axis the rotation occurs on         
% (X_AXIS, Y_AXIS, Z_AXIS)
COORD_SYS= Z_AXIS
%
% Angular velocity vector (rad/s) about the hub origin
BLADE_ROTATION_RATE_X= 0.0
BLADE_ROTATION_RATE_Y= 0.0
BLADE_ROTATION_RATE_Z= 180.0
%
% Coordinates of the hub origin
HUB_ORIGIN_X= 0.0
HUB_ORIGIN_Y= 0.0
HUB_ORIGIN_Z= 0.0
%
% Coordinates of the first hinge origin
HINGE_ORIGIN_X= 0.0
HINGE_ORIGIN_Y= 0.0
HINGE_ORIGIN_Z= 0.0
%
% Blade phase offset (degrees) about the azimuth angle
% e.g. A four-bladed rotor (0 90 180 270)
BLADE_PHASE_X= 0.0 0.0
BLADE_PHASE_Y= 0.0 0.0
BLADE_PHASE_Z= 90.0 270.0
%

% Coefficients of the equations of the blades pitching motion and higher harmonics
% Format -> theta(psi) = theta_0 - theta_1s sin(psi) - theta_1c cos(psi) ...
BLADE_PITCH_MOTION= 4.0 2.0 0.0
%
% Coefficients of the equations of the blades flapping motion and higher harmonics
% Format -> beta(psi) = beta_0 - beta_1s sin(psi) - beta_1c cos(psi) ...
BLADE_FLAP_MOTION= 2.0 2.0 2.0
%
% Coefficients of the equations of the blades lead-lag motion and higher harmonics
% Format -> delta(psi) = delta_0 - delta_1s sin(psi) - delta_1c cos(psi) ...
BLADE_LEADLAG_MOTION= 0.0 -2.0 0.0
%
% Moving wall boundary marker(s) (NONE = no marker, ignored for RIGID_MOTION)
MARKER_MOVING=( blade_1, blade_2 )



• A joint venture in 2010 between the US Government and industry set out to enhance 
understanding of rotorcraft icing with the development and validation of high-fidelity 
icing analysis tools

• Two main experimental initiatives were outlined: 
1. A high-quality oscillating airfoil test [1]

2. A spinning rotor test [2]

• These experimental tests were then the basis for validation of high-fidelity computational 
rotorcraft icing tools

ROTORCRAFT ICING ANALYSIS
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2010 2015 2016 Present

[1] Reinert, T., Flemming, R. J., Narducci, R., and Aubert, R. J., “Oscillating Airfoil Icing Tests in the NASA Glenn Research Center Icing Research Tunnel,” SAE 
Technical Paper No. 2011-38-0016., June 2011.
[2] Fortin, G. and Perron, J., “Spinning rotor blade tests in icing wind tunnel,” 1st AIAA Atmospheric and Space Environments Conference, June 2009.



1. Test Case – Run Number 36
– Icing Analysis
– Performance Analysis
– Flow Field Analysis
– Acoustic Analysis

NUMERICAL RESULTS
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Test Case (number) Air Speed (m/s) α (°) LWC (g/m^3) Time (seconds)

Run 36 77 5±6 0.5 600

Run 62 77 5±6 0.5 900

Run 61 77 5±6 1.0 600

Run 50 132 5±6 0.5 600

Run 55 132 10±6 0.5 600

Run 57 132 10 0.5 600

2. Test Case – Run Number 61
– Icing Analysis
– Performance Analysis
– Flow Field Analysis
– Acoustic Analysis
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Ice Shape Analysis
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Performance Analysis
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TEST CASE 1 - RUN NUMBER 36
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Flow Field Analysis

Clean Iced



TEST CASE 1 - RUN NUMBER 36
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Ice Shape Analysis
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Performance Analysis
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Flow Field Analysis

Clean Iced



Observer Location A

Observer Location B

Observer Location C

-75

-50

-25

0

25

50

75

100

125

4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

p'

t im e (s)

Clean Iced

-75

-50

-25

0

25

50

75

100

125

4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

p'

t im e (s)

Clean Iced

-75

-50

-25

0

25

50

75

100

125

4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

p'

t im e (s)

Clean Iced

 (
Pa

)
 (

Pa
)

 (
Pa

)

TEST CASE 2 - RUN NUMBER 61

24

(CAA), f > 0

f = 0
(CFD), f < 0

Observer location A

Observer location B

Observer location C

45 45

x

x x

x = 10 chord lengths

Acoustic Analysis



1. The method for implementing the main rotor blade kinematics within SU2 now allows the 
possibility of simulating helicopter main rotors in forward flight.

2. The methods supports the multi-zone approach within SU2 so the sliding mesh can be 
used to simulate complex helicopter fuselage-rotor interactions in forward flight.  

3. The collaboration within the SU2 community allows for excellent multi-disciplinary 
projects such as the coupling between modelling ice accretion and noise to help develop 
new technologies such as noise ice detection warning systems

CONCLUSION
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• Validate the flow field of the resultant blade kinematics. HART-II experimental test 
campaign has been selected. This experimental test case will also allow us to assess the 
acoustics produced from the main rotor in descending flight when strong BVI is present.  

• Once at a stage where there is complete verification of the method and validation of the 
results there will be a pull request to merge the feature_ROTORCRAFT branch into the 
main release branch. 

FUTURE WORK
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