Turbomachinery Capabilities in SU2: Current Status and Future Perspectives

N. Anand, M. Pini and P. Colonna

Propulsion and Power, Delft University of Technology

4th Annual SU2 Developers Meeting, Varenna, Italy.

Our Main Goal with SU2

Provide Industrial-Strength Design Methods for NextGen Turbomachines...of any kind!

- Simulation of complex flows (NICFD: pure fluids + mixtures, two-phase, unsteady with ROMs)
- Multi-physics analysis (e.g. FSI)
- Multi-disciplinary design optimization
- Robust optimization

Propulsion & Power

Focus of today!

ROMs = reduced order models, e.g. harmonic balance

1

Current Status

Turbo Features as of Now

- NICFD → complex TMD models (hard-coded, FluidProp, LuT)
- Method of Moments for non-equilibrium condensation
- Turbo features \rightarrow NRBC, MP, SLI and HB for even pitches
- Discrete turbo adjoint solver: steady/unsteady

For single and multi-row

Emphasis (for now) is on compressible flows!

NRBC = Non-reflecting Boundary Conditions MP = Mixing Plane SLI = Sliding Interface

Future Perspective: Turbomachinery Aero-Mechanics

Aero-Mechanics Phenomena

Forced Response

Failure due to bending fatigue caused by Forced Response (Australian Transport Safety Bureau, 2010)

Flutter

Failure due to Flutter in the last stage of a geothermal LP steam turbine during part-load operation (Mazur, 2005)

TUDelft Propulsion & Power

Forced Response

Failure due to bending fatigue caused by Forced Response (Australian Transport Safety Bureau, 2010)

TUDelft Propulsion & Power

Forced Response Due to Unsteady Inflow

What is Needed for Industrial-Strength Turbo Aero-Mechanics?

- Efficient unsteady CFD solver
- Efficient FEA solver

Reduced order models!

- Efficient (coupled) adjoints
- (3D) CAD-based parametrization

Harmonic Balance Flow Solver in SU2

- Time-domain formulation
- Fully differentiated

Working on Phase-lag BCs...

Harmonic Balance Structural Solver

Coming Soon to SU2

(Some) Preliminary Results

Validation of Aero-Elastic Objectives

 $(-\omega^2 M + \omega D + K) \hat{x} = \hat{F}$

7 1 Delft V & Power

CAD-Based Parametrization

ParaBlade: CAD-based Turbo Modeler

- Any type of turbomachine
- "Turbo" design variables
- Coupled to SU2
- Released open-source "soon"

ParaBlade: CAD-based Turbo Modeler

ParaBlade Coupled with SU2

UDelft Stopulsic & Propulsic

Challenge

feature_TMZHB

- Turbomachinery Features
- Harmonic Balance Fluid

feature_FEA

- Finite Element Method

feature_TURBO_FSI

- Ongoing development

Integration in:

feature_turbo_MDO!

Propulsi & Powe

velfi

Thank you for your attention...!!!

