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Motivation of the study

Standard approach for second-order steady compressible simulations with SU2
second-order upwind scheme with reconstruction for space accuracy coupled
with a first-order upwind scheme for fast convergence to steady-state

extended stencil for the second-order upwind scheme vs compact stencil for the
first-order implicit stage

simplicity of the first-order implicit stage solution
) reduced cost-per-iteration

lack of stencil consistency between explicit and implicit stage
D reduced intrinsic efficiency of the implicit treatment (although (agglomeration
multigrid is also available for convergence acceleration)
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Motivation of the study

RBC scheme for second-order steady compressible simulation with SU2
Residual Based Compact scheme = truly multi-D upwind scheme providing
second-order accuracy without reconstruction on a compact stencil

initially developed on Cartesian grids : 2nd-order accuracy achieved on a
compact 3 3 3 stencil (versus non-compact 5-point per direction for
conventional 2nd-order upwind schemes)

extended to unstructured grids in a cell-centered FV formulation

present work = implementation in SU2 D) vertex-centered FV formulation
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Vertex-centered formulation for RBC

Design principles : residual-based

first-order Roe numerical flux
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second-order Roe numerical flux (MUSCL reconstruction)
lfcij = F~(Ui;Uj; rU;; ru;)

with gradient calculation rU;; rU;j required ) extended support
RBC numerical flux 1
5 Ff+Ff
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2
withzthe dissipative flux computed in a compact way from the residual

r= r F° (for inviscid flows) ¥ second-order accuracy at steady-state
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Vertex-centered formulation for RBC

Design principles : residual-based
RBC dissipative flux

Ajj . .
dij = S PIW(AT AP 'ryj
where the appropriate eigenvalues W are computed using both the normal and
tangential velocities to the face shared by i and j (in 1D ¥ = A; in multi-D,
truly multi-D upwinding), Ajj=distance between vertices

residual rij computed on a shifted cell Qjj
Z
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Vertex-centered formulation for RBC

Design principles : residual-based compact
1

= =7 FC ﬂdl
J€%;5]

residual rij computed on a shifted cell Qjj : rij
(R

fluxes F€ to be computed at vertices + cell centers from vertex values
D stencil used = the one used for 1st-order upwind scheme

but here 2nd-order dissipation (and overall accuracy) is achieved
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Vertex-centered formulation for RBC

Implementation (2D) in SU2

new RBC convective flux as an alternative to Roe flux, etc

available 1st-order implicit treatment directly re-used

mple of application
subsonic inviscid flow Mq = 0:5, =2 over a NACA0012 airfoil
unstructured grid (10216 triangles) provided in SU2 test-cases database
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