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Amos Woodward

Waterwheel governor

Founded in 1870 Our First Product
To be 
updat

ed

Today: leading supplier of 
aerospace and industrial 

controls



Glo-Tech II Butterfly Valve

• Exhaust gas flow control valve
• 40 mm thru 150 mm valve bore diameters

• Used on marine and power-gen engines

• Paired with Woodward R-Series geared actuator
• Ability to model valve torque is critical to sizing actuator

• This study evaluated CFD for improving aerodynamic 
torque prediction over an empirical textbook equation
• ANSYS CFX

• SU2



Aero Torque Test Data

• Used compressible flow test stand at Woodward, Loveland CO

• Range of inlet and outlet pressures, valve angles to generate 
aerodynamic torque map of valve
• Transonic and subsonic conditions
• Some test points exceed flow stand capacity, especially larger valves 

at larger angles
• Thus, need for modeling

• 80 mm version of the valve family used for CFD correlation 
study
• Step 1: Build confidence in CFD; good agreement with test data?
• Step 2: Apply to extended flow conditions



Aero Torque Test Data
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Aero Torque Test Data
Transonic conditions: 40 psia P1, 16* psia P2 Subsonic conditions: 62.5 psia P1, 50 psia P2

*P2 adjusted due to test 
stand flow limitations:
A → 18 psia
B → 18 psia
C → 19 psia

A B

C

0°

55°



Aero Torque Test Data

• Valves built with rolling 
element bearings, but to 
further minimize static 
frictional effects, plate was 
manually dithered ≈ ±1°

• Some points produced 
pronounced torque variation 
with this small dither, 
suggesting unsteady effects

• Mean values for angle and 
torque used to express data, 
with 3σ error bars shown Valve dithering to maintain kinetic friction at bearings

Torque 
variation 

with 
position,  
frictional 
hysteresis

± 3σ 
bars

Raw data

Mean angle, 
torque



Empirical Model
• Equation for predicting torque on generic butterfly valve

• Andersen, B. W. (2001). The Analysis and Design of Pneumatic Systems, Krieger Publishing Company
• Equation 3.3-24

• Model previously used when test data was unavailable



Empirical Model

• Poor accuracy
• Over-predicts torque, transonic

• Under-predicts torque, subsonic

• Insensitive to downstream pressure changes, transonic
• See Points “A, B, C” in previous slide

• Model assumes “choked torque” behaves like choked mass flow

• Peak-torque always predicted at 65°, but not the case here

• Poor agreement likely due to unique topology of valve plate



CFD - General approach
• Leverage half-symmetry

• RANS, steady, compressible 

• For the purpose of comparing SU2 with 
CFX, avoid wall functions

• Grid layers strive for y+ ≈ 1, 30 boundary layer cells

• Isothermal pipe walls, adiabatic plate walls

• Lesson learned from previous study: 
include sudden-expansion at inlet 
hose/pipe transition from test stand
• Affects torque at higher valve angles

• Focus on plate angles ≥ 30°

• Grid generation in ANSYS Workbench



Grid: Early grid independence study

• From previous work in CFX on this geometry, ≈10e6 elements 
is optimal.  Grid was further optimized for this study with 
unstructured hex in pipe regions to reduce element count



Grid

Inlet “hose”:
Unstructured hex 
with boundary layers

Sudden expansion 
to pipe:

tets with prism 
layers

Valve body region:
tets with prism layers

Outlet

Valve plate:
prisms



Grid: typical y+ on valve plate

plate half-surfaces 
reflected across 
symmetry plane to 
show y+ adjacent to 
velocity streamlines 
for clarity



CFX Setup

• Multi-configuration
• “Upwind” Advection O(1) initialization run, 500 iterations

• “High Resolution” Advection O(2) finishing run, ≈ 2000 iterations

• Spalart-Allmaras turbulence model (beta feature in CFX)
• SST often used for internal flow, but SA chosen for comparison with SU2

• O(1) turbulence for stability

• Air as ideal gas with Sutherland viscosity model

• Total energy

• Mean ± 3σ from final 500 iterations used to report torque results
• Quasi-attempt to capture any unsteady effects



CFX Results



CFX Conclusions 

• Much improved prediction over empirical model
• Generally within error bars of test data

• Exceptions: 
• 75° transonic, low prediction

• Slight over-prediction of subsonic peak torque region

• Accurately captures the transonic torque-shift at 65° when P2 
is increased from 16 to 18 psia



Why Evaluate SU2?

• Open-source alternative to commercial codes

• Today, steady-state RANS is still workhorse for our simulations…
• Commercial licensing for 32-core jobs is tractable

• …but, how can our product design and insight improve as we move 
towards scale-resolved simulations in the future?
• Freedom from license costs that scale with processor count is attractive

• Ability to customize the code if/when needed

• SU2 points of interest
• Density-based, adjoint capabilities, solver improvements in v7.0.0, FEM DG 

capability is interesting, active development community, documentation 
keeps improving, good tutorials



SU2 - Setup

• Version 7.0.0

• Used same grids as CFX runs (both codes are node-based)

• 6000 iterations

• SA turbulence model

• CFL adapt [5 → 30], 50 linear solver max iterations, 1e-3 tol

• Green-Gauss for gradient and reconstruction

• MUSCL with Venk-Wang slope limiter, O(1) turbulence w/o Limiter

• SLAU2, found to have low dissipation and good stability

• No multigrid, no low-Mach preconditioning 

• Sutherland viscosity, Const. Prandtl thermal conductivity



SU2 Setup

• A note about inlet boundary:
• Normally, would use inlet total pressure boundary condition

• However, due to effects of long inlet including sudden expansion, 
used a mass-flow inlet using flow data from test stand

• Ran into a challenge with mass-flow inlet with SU2 (next slide)

Approximate p1 
control probe 
location on test 
stand (known)

Inlet boundary for CFD 
domain:
mass flow & temperature 
known, pressure unknown

Shocks @ sudden expansion 
for some points

Significant Δp at 
higher flows



SU2 Setup

• For MASS_FLOW inlet, SU2 specifies density and velocity; 
temperature and pressure are extracted from the domain (subsonic 
inlet assumed)
• Free-stream initialization therefore is important, options are:

• TEMPERATURE_FS → ρ∞ calculated from P∞, T∞

• DENSITY_FS → T∞ calculated from ρ∞, P∞ 

• To satisfy inlet boundary, free-stream initial conditions should reflect inlet hose region

• From flow test, T∞ is known, but P ∞ and V ∞ are unknown and thus ρ∞ is 
unknown

• For this study, used the inlet conditions from CFX solutions for SU2  
freestream initialization to generate robust initial conditions

• Also ran a 2x2 DOE of initialization option, and P ∞ guesses 0.5 bar 
too low and 0.5 bar too high vs. CFX solution (next slide)



SU2 Setup



SU2 Setup

• ± 0.5 bar guess for P ∞ resulted in ± 0.4 N*m torque 
• 22% effect vs. mean torque at “correct” P ∞

• Negligible difference between TEMPERATURE_FS and 
DENSITY_FS initialization, provided all FS properties coupled 
to the initial P ∞ guess

• A mass flow inlet boundary with specified temperature would 
be useful for internal flows, such as in CFX

• https://www.cfd-online.com/Forums/su2/151385-mass-flow-inlet-given-temperature.html

• That aside, on to the results…

https://www.cfd-online.com/Forums/su2/151385-mass-flow-inlet-given-temperature.html


SU2 Results



SU2 Results
• Also compared resultant force on plate 

• Used for bearing load; important for frictional torque contribution

• No test data available for this quantity, rely solely on CFD

• Very good agreement between CFX and SU² (next slide)

F.x

F.
y



SU2 Results



Comparative Visualizations – Sudden Expansion



Comparative Visualizations – Plate Wake



Comparative Visualizations – Plate Wake



Plate Pressure, Transonic 70° Point Possible region driving torque 
difference at 70°
note narrow pressure color scale

p1 side p2 side p1 side



SU2 Conclusions

• Much-improved prediction over empirical model and largely inline 
with CFX results
• Generally within error bars of test data
• Exceptions: 

• 70° transonic and > 75° trans & subsonic, lower torque than CFX

• Improved peak-torque prediction for subsonic vs. CFX
• Accurately captures the torque-shift at 65° when P2 is increased from 16 to 

18 psia

• SU2, using SLAU2, appears slightly less dissipative than CFX “High 
Resolution”

• SU2 produces results accurate enough for actuator sizing for valve 
system



Looking Ahead

• CFD can be a reliable tool for aerodynamic torque prediction 
of a butterfly plate, at transonic and subsonic conditions

• SU2 shown to compete well with CFX
• Virtual “thumbs-up” to SU2 development team 

• Further areas of interest for SU2
• Chasing down the high-angle torque sensitivities vs. CFX

• Explore the adjoint capabilities: optimize geometry of plate to 
minimize aero torque/force?

• Evaluate FEM DG solver – benefits/strengths/drawbacks vs FVM?

• Scale-resolved simulations providing additional insight?




