
Hybrid Parallelization of SU2
A Comprehensive Introduction

Pedro Gomes, Rafael Palacios

1st Annual SU2 Conference, 10-12 June 2020

Contents

I Motivation

I The hybrid parallel model

I OpenMP, an overview

I Challenges (and solutions)

I Implementation overview

I Concluding remarks

2 / 21

Motivation

Faster and more robust code, that scales better.

I Algorithms work better;

I Dynamic load balancing;

I Reduced communication overhead;

Objective, fast medium scale
optimizations.

3 / 21

Motivation

Q: What is covered by the implementation?
A: Primal and forward AD compressible URANS FSI (and subsets).
Q: How do I use it?

1 ./ meson.py ... -Dwith -omp=true ...

2

3 # auto number of threads/rank

4 SU2_CFD config.cfg

5 # 8 threads total

6 mpirun -n 2 --bind -to numa SU2_CFD -t 4 ...

7 # never --bind -to core

8 # mileage may vary , e.g. 2*4 != 4*2

9

10 # Useful environment variables:

11 # overrides default threads/rank

12 export OMP_NUM_THREADS =4

13 # better performance on some systems

14 export OMP_WAIT_POLICY=ACTIVE

4 / 21

The hybrid parallel model

Domain decomposition for MPI (static) vs the (possibly) dynamic
movement of threads within sub-domains.

Rank 0 Rank 1

Rank 2Rank 3

Thread(s)

Halo nodes

Threads within each
partition can directly
access any part of it.

Data from other ranks
is obtained indirectly
via messages.

5 / 21

The hybrid parallel model

The threads can interact with MPI in different ways, currently
communications are funneled (multiple is WIP).

Thread 0

Thread 1
…

Thread N

Rank 0

Thread 0

Thread 1
…

Thread N

Rank 1
MPI

Layer

Thread 0

Thread 1
…

Thread N

Rank 0

Thread 0

Thread 1
…

Thread N

Rank 1
MPI

Layer

Funneled communication
(only the main thread uses MPI)

Multiple communication
(any thread at any time can use MPI)

6 / 21

OpenMP, an overview

An API that provides a simple and flexible interface (mostly in the
form of pragmas) to develop portable parallel applications.

1 const int N = 1024; // a shared variable

2 // start some threads

3 #pragma omp parallel

4 {

5 int i; // a private variable

6 // distribute loop indexes over threads

7 #pragma omp for schedule(dynamic ,32)

8 for(i=0; i<N; ++i)

9 myThreadSafeFunction(i);

10 }

We want to use this API to distribute the work (loops) in each
MPI partition over its threads.

7 / 21

OpenMP, an overview

How do threads ”communicate” between themselves?

1 // a function called by multiple threads

2 // x,y shared variables

3 void axpy(int N, double a, const double* x, double* y)

4 {

5 // here there is no guarantee that the threads

6 // have a consistent view of the arrays

7 #pragma omp barrier

8 // now there is

9 #pragma omp for simd schedule(static ,1024)

10 for(int i=0; i<N; ++i) y[i] += a*x[i];

11 // there are implicit barriers after most

12 // worksharing directives

13 }

Identifying and counting threads:

1 omp_get_num_threads () <=> "size"

2 omp_get_thread_num () <=> "rank"

8 / 21

OpenMP, an overview
Shared vs private variables

1 #pragma omp parallel num_threads (4)

2 {

3 // each thread has its own stack -> private

4 double x[64] = {1.0};

5 // the heap is shared , but we made 4 y’s...

6 vector <double > y(64 ,2.0);

7 // this will not do what we want ...

8 axpy(64, 0.5, x, y.data());

9 }

So do we need to declare/allocate everything outside parallel
regions? Yes, and no.

1 vector <double > y;

2 #pragma omp parallel num_threads (4)

3 {

4 #pragma omp master

5 y.resize (64 ,2.0); // only one thread allocates

6 #pragma omp barrier

7 ...

9 / 21

Challenges

Data races
When multiple threads simultaneously modify the same memory
location (in an unregulated manner).

Builtin (OpenMP) solutions:

I Atomic operations;

I Critical directive;

I Locks;

Algorithmic solutions:

I Coloring / Partitioning;

I Scatter to Gather
transformations;

10 / 21

Challenges

Builtin solutions:

1 // atomics are good for reduction operations

2 auto mySum = f(); // a private variable

3 #pragma omp atomic

4 ourSum += mySum; // safe update of shared variable

5

6 // critical for global resources

7 #pragma omp critical

8 cout << mySum << endl; // serialize output (unordered)

9

10 // locks for specific resources

11 const auto j = selectResource(omp_thread_num ());

12 omp_set_lock(fileLocks[j]);

13 files[j] << mySum << endl;

14 omp_unset_lock(fileLocks[j]);

Pros: Small modifications to existing algorithms.
Cons: Overhead, poor scaling for resources used intensively.

11 / 21

Challenges

Partitioning, re-partition the MPI sub-domains, not what we want.
Coloring, create non-intersecting sets of entities (data race free).

1 for(auto c : EdgeColoring) {

2 SU2_OMP_FOR_DYN(groupSize)

3 for(int k=0; k<c.size; ++k) {

4 auto idx = c.indices[k];

5 ...

Pros: Load balancing via dynamic scheduling.
Cons: Reduced locality, parallel inefficiency (not enough work
chunks for all threads).

This is our first choice for residual loops (use option
EDGE COLORING GROUP SIZE [512] to tune it).

12 / 21

Challenges

Scatter to Gather transformations:

1 for(edge : Edges) {

2 // gather

3 auto f = y[iPt]+y[jPt];

4 // scatter

5 x[iPt] += f;

6 x[jPt] += f;

7 }

1 for(iPt : Points) {

2 // gather

3 for(jPt : neighbors(iPt))

4 x[iPt]+=y[iPt]+y[jPt];

5 }

Pros: Embarrassingly parallel code, if the FLOP/BYTE ratio is
O(1) the code may perform better.
Cons: Needs adjacency matrix, 2x slower if FLOP/BYTE >> 1.

This is what was done for preprocessing-type routines (gradients,
limiters, sensors, etc.).

13 / 21

Challenges

Scatter to Gather transformations (two loop approach):

1 for(edge : Edges) {

2 // gather

3 f[edge] = y[iPt]+y[jPt];

4 }

5 for(iPt : Points) {

6 // gather

7 for(edge : Edges(iPt))

8 x[iPt] += f[edge];

9 }

Pros: Approximately the same number of flops.
Cons: Extra storage needed for temporary variables, reduction loop
has very low FLOP/BYTE ratio.

When edge coloring fails, SU2 falls back to this approach. About
20% slower worst case. A hybrid approach would probably be optimal.

14 / 21

Implementation overview

All pragmas and functions used throughout the code are wrapped
in omp structure.hpp, this allows disabling everything when
-Dwith-omp=false (default).

1 #define SU2_OMP_SIMD SU2_OMP(simd)

2 #define SU2_OMP_MASTER SU2_OMP(master)

3 #define SU2_OMP_ATOMIC SU2_OMP(atomic)

4 #define SU2_OMP_BARRIER SU2_OMP(barrier)

5 #define SU2_OMP_CRITICAL SU2_OMP(critical)

6 #define SU2_OMP_PARALLEL SU2_OMP(parallel)

7 ...

SU2 OMP ≈ SU2 MPI::

15 / 21

Implementation overview

Threads are started once per iteration (and per integration) in
CIntegration (single or multi grid), output, to screen and file, is
not multi-threaded.

1 /* --- Start an OpenMP parallel region covering the

entire MG iteration , if the solver supports it.

---*/

2 SU2_OMP_PARALLEL_(if(solver_container[iZone][iInst][

MESH_0][Solver_Position]->GetHasHybridParallel ()))

3 {

4 ...

All routines that are part of one iteration must be thread-safe (i.e.
no unguarded writes to colliding memory locations).

16 / 21

Implementation overview

The ”one numerics per thread” paradigm:
Numerics are shared objects (instantiated outside parallel regions)
with mutable state and thus cannot be used by multiple threads.

1 /* --- Pick one numerics object per thread. ---*/

2 CNumerics* numerics = numerics_container[CONV_TERM +

omp_get_thread_num ()*MAX_TERMS];

This kind of temporary variable must also be avoided:

1 class CSolver {

2 su2double *Solution , /*!< \brief Auxiliary ... */

3 *Solution_i , /*!< \brief Auxiliary ... */

4 ...

What about using one per thread too? Bad idea due to false
sharing.

17 / 21

Implementation overview

Grid coloring or fallback strategies are setup in solver constructors,
then in residual loops:

1 if (ReducerStrategy) {

2 EdgeFluxes.SetBlock(iEdge , residual);

3 Jacobian.SetBlocks(iEdge , ...

4 }

5 else {

6 LinSysRes.AddBlock(iPoint , residual);

7 LinSysRes.SubtractBlock(jPoint , residual);

8 Jacobian.UpdateBlocks(iEdge , iPoint , jPoint , ...

9 }

10 ...

11 } // end color loop

12

13 if (ReducerStrategy) {

14 SumEdgeFluxes ();

15 Jacobian.SetDiagonalAsColumnSum ();

16 }

18 / 21

Implementation overview

Other tricky areas

To go around a barrier, we need two barriers:

1 if(condition) {

2 SU2_OMP_BARRIER // wait for all threads to enter

3 SU2_OMP_MASTER {condition = f();} // before updating

4 SU2_OMP_BARRIER // or some might skip this barrier

5 }

Not so obvious deadlocks:

1 axpy(N,a,x,y); // this is fine , works in serial

2 SU2_OMP_PARALLEL {

3 axpy(N,a,x,y); // this is fine , works in parallel

4 SU2_OMP_MASTER {axpy(N,a,x,y);} // deadlock

5 // other threads missed the barrier inside axpy

6 }

19 / 21

Implementation overview
AD-compatible funneled reductions (would be simpler with
multiple communication):

1 su2double minElem(int N, const su2double* x) {

2 static su2double ourMin; // global var!!

3 SU2_OMP_BARRIER // consistent view of x

4 SU2_OMP_MASTER {ourMin = 1e30;} // init global

5 su2double myMin = 1e30; // init local

6 SU2_OMP_FOR_STAT (256)

7 for(int i=0; i<N; ++i) myMin = min(myMin , x[i]);

8 SU2_OMP_CRITICAL // serialize update of shared var

9 ourMin = min(ourMin , myMin);

10 SU2_OMP_BARRIER // wait for all updates

11 SU2_OMP_MASTER { // master communicates

12 myMin = ourMin;

13 SU2_MPI :: Allreduce (&myMin , &ourMin ,...

14 }

15 SU2_OMP_BARRIER // consistent view of ourMin

16 return ourMin; // same on all threads and ranks

17 }

20 / 21

Concluding remarks

I Small set of OpenMP features used (also for eventual
compatibility with reverse AD);

I That are still enough to improve scalability;

I Somethings require a bit more care, but essentially just be
careful when writing to shared variables;

I Still lots of WIP, the solvers currently covered are a test bed
for hybrid parallel strategies, it will take some time to cover
everything.

21 / 21

