HOW TO SET UP MULTI-ZONE PROBLEMS IN SU2

11.06.2020, i.e. v7.0.5

BOSCH

1. MESH HANDLING

2. CONFIG FILES

3. POST PROCESSING

Disclaimer(s) Please don't sue me

- This is by no means my work and there are a lot of people to give credit to ... therefore I just thank the SU2 community ⁽ⁱ⁾
- SU2 is mostly NOT a streamlined developed software => concepts might be inconsistent and bugs occur
- ► I did my best to get all infos right, but ...
 - there can be errors on the slides and audio track
 - not everything can be mentioned
 - edge cases are not covered

- ▶ Who is this for? Everyone ...
 - ... who wants to set up a multizone computation
 - ... and has already some SU2 background
- This presentation is certified 100% equationfree!

1. Mesh Handling What is a Zone?

- ► What defines a 'zone'?
 - Used physics (fluid flow, heat conduction, structural mechanics)
 - Moving mesh (fluid-fluid)
 - Not necessarily geometric connectivity (see image)
- Connection between zones via interface boundaries (optional)
- MULTIZONE single physics and MULTIPHYSICS possible for fluidfluid cases

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

1. Mesh Handling What is a Zone?

- ► What defines a 'zone'?
 - Used physics (fluid flow, heat conduction, structural mechanics)
 - Moving mesh (fluid-fluid)
 - Not necessarily geometric connectivity (see image)
- Connection between zones via interface boundaries (optional)
- MULTIZONE single physics and MULTIPHYSICS possible for fluidfluid cases

2020-06-07 T. Kattmann, Robert Bosch GmbH © Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

1. Mesh Handling How should I create the mesh?

- ► Each zone is discretized independently
- Interface Boundary markers have to be 'geometrical' pairs
 - KIND_INTERPOLATION= ... specifies how values are communicated over the boundary
- Sidenote: internal structures are separate for each zone (config, solver, etc.)
- MPI: each rank gets a chunk of each zone
 - Important for e.g. Multigrid methods.

T. Kattmann, Robert Bosch GmbH

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

1. Mesh Handling How to create a multizone Mesh

- ► MULTIZONE_MESH= NO
 - Create meshes for each zone just as for single zone cases
 - Mesh has to be specified in each zonal config

- MULTIZONE_MESH= YES (default)
 - Easy creation from single zone meshes as shown below
 - Order of the meshes is kept for config files in CONFIG_LIST= (...)

BOSCH

2020-06-07

T. Kattmann, Robert Bosch GmbH

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

8

Config files

Q 2020-06-07

T. Kattmann, Robert Bosch GmbH

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

- All config options set in the master are also used in the zonal config (i.e. they are internally copied), except...
- ... config options that are set in the zonal config as well.
- If an option is set in neither of the config files, the default value is taken

Suggestion:

- 1. Try single zones independently
- 2. Create master and add zonal configs
- 3. Transfer common options to master

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

- ► Options to set into the master config:
 - ► SOLVER= MULTIPHYSICS
 - ► MULTIZONE_MESH= YES/NO
 - ► CONFIG_LIST= (zoneA.cfg, ...)
 - MARKER_ZONE_INTERFACE= (wallA, wallB, ...)
 - ► TIME/OUTER_ITER= 100
- ► Zonal:
 - Do not set interface boundary markers again
- Use 'SU2_CFD <master.cfg>' to start the simulation

BOSCH

11 2020-06-07

T. Kattmann, Robert Bosch GmbH

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

14

SOLVER= INC_NAVIER_STOKES	SOLVER= MULTIPHYSICS MULTIZONE_MESH= YES MESH_FILENAME= multizone.su2 CONFIG_LIST= (zoneA.cfg \ zoneB.cfg)	SOLVER= HEAT_EQUATION
MARKER_whatever= (interfaceA)		MARKER_whatever= (interfaceB)
ITER= 100		ITER= 100
HISTORY_OUTPUT= (ITER, \ AERO_COEFF)		AVG_TEMPERATURE) HISTORY_OUTPUT= (ITER, HEAT)
OUTPUT_FILES= (RESTART,\ PARAVIEW_MULTIBLOCK)		PARAVIEW_MULTIBLOCK)
zoneA.cfg	master.cfg	zoneB.cfg

SOLVER= INC_NAVIER_STOKES	SOLVER= MULTIPHYSICS MULTIZONE_MESH= YES MESH_FILENAME= multizone.su2 CONFIG_LIST= (zoneA.cfg \	SOLVER= HEAT_EQUATION
MARKER_whatever= (interfaceA)	<pre>zoneB.cfg) MARKER_ZONE_INTERFACE= (\ interfaceA, interfaceB) MARKER_CHT_INTERFACE= (\ interfaceA, interfaceB)</pre>	MARKER_whatever= (interfaceB)
ITER= 100		ITER= 100
SCREEN_OUTPUT= (ITER, DRAG)		SCREEN_OUTPUT= (ITER, \
HISTORY_OUTPUT= (ITER, \ AERO_COEFF)		HISTORY_OUTPUT= (ITER, HEAT)
OUTPUT_FILES= (RESTART,\ PARAVIEW_MULTIBLOCK)		OUTPUT_FILES= (RESTART,\ PARAVIEW_MULTIBLOCK)
zoneA.cfg	master.cfg	zoneB.cfg

Singlezone steady only uses ITER

16

- Singlezone steady only uses ITER
- Singlezone unsteady uses TIMER_ITER and INNER_ITER

- Singlezone steady only uses ITER
- Singlezone unsteady uses TIMER_ITER and INNER_ITER
- ► In Multizone computations:
 - TIME_ITER -> OUTER_ITER -> INNER_ITER independent of steady-unsteady
 - Exchange of interface data (Coupling) happens with each OUTER_ITER
 - Update in pseudo time with each INNER_ITER

2020-06-07 T. Kattmann, Robert Bosch GmbH © Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

SOLVER= INC_NAVIER_STOKES	SOLVER= MULTIPHYSICS MULTIZONE_MESH= YES MESH_FILENAME= multizone.su2 CONFIG_LIST= (zoneA.cfg \ zoneB.cfg) MARKER_ZONE_INTERFACE= (\ interfaceA, interfaceB) MARKER_CHT_INTERFACE= (\ interfaceA, interfaceB)	SOLVER= HEAT_EQUATION
INNER_ITER= 1	OUTER_ITER= 100	INNER_ITER= 1
SCREEN_OUTPUT= (ITER, DRAG)		SCREEN_OUTPUT= (ITER, \
HISTORY_OUTPUT= (ITER, \ AERO_COEFF)		HISTORY_OUTPUT= (ITER, HEAT)
OUTPUT_FILES= (RESTART,\ PARAVIEW_MULTIBLOCK)		OUTPUT_FILES= (RESTART,\ PARAVIEW_MULTIBLOCK)
zoneA.cfg	master.cfg	zoneB.cfg

3. Post- / Midprocessing Screen and History output (SU2_CFD -d <config>.cfg)

SOLVER= INC_NAVIER_STOKES	SOLVER= MULTIPHYSICS MULTIZONE_MESH= YES MESH_FILENAME= multizone.su2 CONFIG_LIST= (zoneA.cfg \ zoneB.cfg)	SOLVER= HEAT_EQUATION
	MARKER_ZONE_INTERFACE= (\ interfaceA, interfaceB) MARKER_CHT_INTERFACE= (\ interfaceA, interfaceB)	
INNER_ITER= 1	OUTER_ITER= 100	INNER_ITER= 1
<pre>SCREEN_OUTPUT= (ITER, DRAG) HISTORY_OUTPUT= (ITER, \ AERO_COEFF)</pre>	<pre>SCREEN_OUTPUT= (OUTER_ITER, \ DRAG[0], AVG_TEMPERATURE[1]) HISTORY_OUTPUT= (ITER, \ AERO_COEFF[0], HEAT[1])</pre>	<pre>SCREEN_OUTPUT= (ITER, \ AVG_TEMPERATURE) HISTORY_OUTPUT= (ITER, HEAT)</pre>
	OUTPUT_FILES= (RESTART,\ PARAVIEW_MULTIBLOCK)	
zoneA.cfg	master.cfg	zoneB.cfg

3. Postprocessing Output Files

- Option A: Write zonal output independently and load consecutively into your preferred tool (Paraview, Tecplot, etc.) ...
- Option B: ... or use OUTPUT_FILES= (PARAVIEW_MULTIBLOCK). Load that into Paraview via the .vtm file
- Sidenote: Default name for vtm-folder and history is the master-config filename

3. Postprocessing Paraview Multiblock (.vtm)

2020-06-07

T. Kattmann, Robert Bosch GmbH

🕒 BOSCH

© Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

3. Postprocessing Paraview Multiblock (.vtm) animation

File Edit View Search Terminal Tabs Help

2020-06-07

Discrete Adjoint Gradients

- Gradients via discrete adjoint method are available just like in single zone simulations
- Explicitly set OBJECTIVE_FUNCTION and OBJECTIVE_WEIGHT in each zonal config, even for no zonal contribution to the objective function
- Python scripts, e.g. shape_optimization.py, do not work with in multizone in the moment

- Image: Heatflux sensitivities of the inner pin
- https://su2code.github.io/tutorials/Inc_Heated __Cylinders/

BOSC

Finishing Remarks "I slept the last 30 minutes... what did I miss?" – Random Listener

We covered (in a basic manner):

- Mesh creation
- Basic structure of the multizone config files
- Output considerations

Finishing Remarks "I slept the last 30 minutes... what did I miss?" – Random Listener

We covered (in a basic manner):

- Mesh creation
- Basic structure of the multizone config files
- Output considerations
- ... so now everything should be easy, right?

Finishing Remarks "I slept the last 30 minutes... what did I miss?" – Random Listener

We covered (in a basic manner):

- Mesh creation
- Basic structure of the multizone config files
- Output considerations
- ... so now everything should be easy, right?

If there are problems:

- See website <u>https://su2code.github.io</u> for more information ...
- ... if that does not help take a look into 'TestCases' folder (e.g. 'grep -r MULTIPHYSICS')...
- In or ask a question https://www.cfd-online.com/Forums/su2/ and bug reports https://github.com/su2code/su2/issues include me via @TobiKattmann

Thank you for tuning in and I hope you enjoy working with SU2 ©