# Scale-Resolving Simulations in SU2

Eduardo Molina and Juan J. Alonso esmolina@stanford.edu, jjalonso@stanford.edu

Stanford University

with help from: Prof. Edwin van der Weide, Paul Urbanczyk and Dr. Beckett Zhou

1st SU2 Conference 2020

- Motivation
- Development of Hybrid RANS/LES and WMLES models
- Guidelines of Scale-Resolving Simulations in SU2
- Results
  - Turbulent Channel Flow
  - LAGOON (Landing Gear)
- Ongoing & Future work

## Outline

## Motivation

- Standard RANS models are known to perform poorly on vortex-dominated, separated, and transitional flows.
- Increasing pressure for accurate prediction of areas at the edge of the flight envelope earlier in design process: performance, noise and safety.
- Demonstrate that scale-resolving methods can lead to high levels of confidence on design and off-design conditions.



Deck et al. 2014







Level of physical modeling

## Hierarchy of CFD Paradigms

## Scale-Resolving Methods in SU2

### A. Non-Zonal Hybrid RANS/LES:

- 1. Delayed Detached Eddy Simulation (DDES) (Spalart et al. 2006)
- 2. Improved DDES (IDDES) (Shur et al. 2008)
  - Both approaches are based on the SA turbulence model and use the Shear-Layer Adapted SGS (SA-EDDES). *(Shur et al. 2015)*

### **B. Wall-modeled LES (WMLES):**

- 1. Algebraic Wall Model (Reichardt 1951)
- 2. 1D Equilibrium Wall Model (Kawai & Larsson 2012)
  - LES extends all the way to the wall with a separate decoupled wall-parallel grid for the WM.



## Guidelines of Scale-Resolving Simulations

### Numerical Method:

- DDES: Enhanced DDES based on SA turbulence model
- WMLES: Logarithmic Wall Model coupled with Vreman SGS.
- Mesh generation:
  - Surface maximum spacing:  $\Delta_{max}/l_{ref} \approx 0.005 0.01$
  - Focus region:  $\Delta_{max}/l_{ref} \approx 0.01 0.02$
  - First point off the wall: DDES ( $Y^+ \approx 1$ ) and WMLES ( $Y^+ \approx 50 100$ ) with exchange location between the 3rd and 5th node.
- Spatial Discretization:
  - Select a low-dissipation convective scheme: Modified JST or SLAU2 are good candidates.
- Time Discretization:
  - Select a physical time step based on the convective time step  $\Delta_{l_{max}}/T_c = 0.01$  where  $T_c = l_{ref}/U_{\infty}$ .
  - Dual-time stepping with 10 inner iterations. Expect a density residual reduction of 2-3 orders.

% DDES Config File **SOLVER= RANS** KIND\_TURB\_MODEL= SA **HYBRID\_RANSLES= SA\_EDDES** 

% WMLES Config File **SOLVER= NAVIER\_STOKES** KIND\_TURB\_MODEL= NONE KIND\_SGS\_MODEL= VREMAN MARKER\_WALL\_FUNCTIONS= ( wall, LOGARITHMIC\_WALL\_MODEL, 0.1, 0.0, 0 ) **VOLUME\_OUTPUT= (PRIMITIVE, WALL\_FUNCTION)** 

```
Exchange location
```

```
% Common settings for both DDES and WMLES
CONV_NUM_METHOD_FLOW= JST %SLAU2
JST_SENSOR_COEFF= ( 0.0, 0.0009765625 )
TIME_DOMAIN= YES
TIME_MARCHING= DUAL_TIME_STEPPING-2ND_ORDER
INNER_ITER= 10
TIME_STEP= 1.0E-5
CFL_ADAPT= YES
CFL_ADAPT_PARAM= (0.1, 1.2, 1.0, 20.0)
NUM_METHOD_GRAD= GREEN_GAUSS %WEIGHTED_LEAST_SQUARES
NUM_METHOD_GRAD_RECON= LEAST_SQUARES
```

## Examples of Hybrid RANS/LES Simulations in SU2

- Flow around Tandem Cylinders (Molina et al. 2019)
- Round jet noise (Zhou, Tejal et al. 2021)
- Transonic wing buffet (Molina et al. 2018)
- Vortex breakdown of a Delta wing (Zhou et al. 2019)
- Flow around automotive configurations (*Zhou et al. 2021*)







## WMLES Verification and Validation

- Turbulent Channel Flow ( $Re_{\tau} = 5200$ ).
- Algebraic Wall Model with Vreman SGS.
- Periodic boundary conditions in x and z-directions with a constant body force.
- Computational Domain:  $L_x/\delta, L_y/\delta, L_z/\delta = (2\pi, 2, \pi)$
- Mesh Size:  $96 \times 48 \times 48$  with  $Y^+ \approx 100$ .
- Good agreement with DNS in the outer layer for exchange locations between  $h_{wm}/\delta = 0.075 0.1$  (top of 4th and 5th cell).
- <u>Recommendation</u>: Place the exchange location beyond the 3rd cell.



## LAGOON (Nose Landing Gear Model)

- Joint project by Airbus and Onera\*
- Objective: Build an aerodynamic/acoustic experimental database on a two-wheel simplified landing gear for flow and noise prediction.
- Wheel diameter: 300 mm
- 64 static pressure taps
- 27 Kulite unsteady pressure transducer
- HW, PIV and LDV measurements

|                    | F2                     | CEPRA1    |
|--------------------|------------------------|-----------|
| Static pressure    | 99447.7 Pa             | 96772.3 P |
| Static temperature | 293.56 °K              | 288.39 °k |
| Density            | 1.18 kg/m <sup>3</sup> | 1.18 kg/m |
| Mach               | 0.23                   | 0.23      |

\*E. Manoha, J. Bulté, and B. Caruelle, "Lagoon : An Experimental Database for the Validation of CFD/CAA Methods for Landing Gear Noise Prediction", AIAA- 2008-2816, 14th AIAA/CEAS Aeroacoustics Conference, Vancouver, May 5-7, 2008

F2 WT











CEPRA19 WT

- Mesh generated using Pointwise's v18.3 Voxel feature.
- Maximum edge size of 0.0067D on the surface (without transition trip) and maximum edge size of 0.02D in the wake.
- Constant mesh size region 2.5D downstream of wheels added to better capture turbulent structures.
- Volume grid with 6 levels of refinement.
- Fast turnaround (CAD to final mesh).
- First point off the wall (h1 = 0.002D) with exchange location for wall model (hwm = 4.28\*h1) located between the 4th and 5th element.
- During preprocessing only 2 donor elements were not found and their exchange location was set to h1.

## LAGOON: Mesh Details









| $\overline{\wedge}$ |                  |
|---------------------|------------------|
| $\geq$              | 24               |
| 译                   | $\mathbb{D}$     |
|                     |                  |
| V                   | - Carlo          |
| -                   | $\rightarrow$    |
| +                   | $\prec$          |
|                     | $\triangleright$ |
| _                   | $\rightarrow$    |
| +                   | -                |
| +                   | $\Rightarrow$    |
| +                   | ≺                |
|                     |                  |
| 4                   | $\rightarrow$    |
| +                   | $-\!\!<$         |
| +                   | $\Rightarrow$    |
|                     | $\prec$          |
| _                   |                  |
| +                   | $\rightarrow$    |
| +                   | $-\!\!<$         |
| +                   | $\rightarrow$    |
|                     |                  |
| 1                   | -                |
| +                   | $\Rightarrow$    |
| +                   | ĸ                |
|                     | $\geq$           |
|                     |                  |
| -                   | -<               |
| -                   | $\Rightarrow$    |
|                     | $\prec$          |
|                     | $\geq$           |
| T                   |                  |

|    | A.  | н   | 1          | 5  | Н  | -  | ŀ |
|----|-----|-----|------------|----|----|----|---|
|    | -   | H   | <b>h</b> - | н  |    | H  | ł |
|    |     |     | ł          |    |    |    | t |
|    |     | 1   |            |    |    |    |   |
| i, | 27  | H   | -          |    | 2  | Ę  | F |
| H  | Ŧ   | н   | -          | 5  |    | ۴  | h |
|    | -   | H   |            | Ē  |    | E  | t |
|    |     |     |            | -  |    |    | E |
|    | 4   |     | 2          | Ц  |    |    | ŀ |
|    | 1   |     | 2          | r  |    | -  | h |
| N  | n   | -   |            |    |    |    | h |
|    |     |     |            | -  |    |    | Ľ |
|    | +   | H   |            | -  |    | -  | ł |
| -  | -   | н   |            | -  | н  | H  | t |
|    |     |     |            |    |    |    | E |
|    | Ŧ   |     | -          |    |    |    | P |
|    | -   | -   |            | -  | H  | -  | ł |
| 1  |     |     |            | -  |    |    | ŀ |
|    |     |     |            |    |    |    | E |
|    | Ŧ   |     |            | -  |    | E  | P |
| 1  | 1   | e   | 11         | H  | Ĥ  | H  | f |
| į, |     | Ľ,  |            | Ľ, | Ú  | Ľ  | Ď |
|    |     |     |            |    |    |    | E |
| 9  | HF. | P   |            | P  | P  | F  | f |
| ÷  | -   | H   | H          | H  | H  | H  | f |
| ť  |     | Ħ   |            | É  | É  | É  | É |
|    |     |     |            |    |    |    | ľ |
| 1  | -   |     |            | -  |    |    | ŀ |
|    | -   | H   |            | -  |    | F  | h |
|    | I   |     |            |    |    |    | ľ |
|    | +   |     |            | -  |    | -  | ł |
| H  | -   | н   |            | -  | н  | H  | h |
|    |     |     |            |    |    |    | t |
|    |     |     |            |    |    |    | ľ |
| -  | +   | н   |            | -  | H  | H  | H |
|    |     |     |            |    |    |    | t |
|    | -   |     |            | _  |    | -  | Ļ |
| ł  | +   | Н   |            | -  | Η  | -  | ł |
|    |     |     |            |    |    |    | E |
| -  | -   |     |            | -  |    |    | F |
|    | +   | н   |            | -  | H  | H  | ł |
|    | -   |     |            |    | H  | F  | t |
|    |     |     |            |    |    |    | ľ |
|    | +   |     |            | -  |    |    | F |
| f  | -   | H   | H          | H  | H  | H  | f |
|    |     |     |            |    |    |    | t |
| i) |     | цí) |            |    | Ľ. | Ľ. | Ľ |
| H  | -   | H   | -          | H  | H  | H  | ß |
|    | +   | H   |            |    | H  | F  | t |
| 1  |     |     |            | Ē  | Ľ  | É  | Ē |
|    | -   | -   |            | -  | -  | -  | H |
| H  | -   | H   | 1          | H  | H  | H  | B |
|    |     | H   |            |    |    | F  | h |
| 1  |     |     |            |    |    |    | Í |
| 1  | -   | H   | H.         | H  | Ĥ  | H  | f |
| Í  |     | Ľ   |            |    | ť  | Ľ  | t |
| ľ  |     |     |            |    | ľ  | Ľ  | ľ |
| Ĥ  | ÷   | Ĥ   | H.         | H  | Ĥ  | Ĥ  | f |
| f  |     | Ħ   |            | h  | Ħ  | h  | f |
| ľ  |     |     |            |    | Ú  | Ľ  | ľ |
| f  | ÷   | H   | H          | H  | Ĥ  | H  | f |
| ť  |     | H   |            | H  | H  | E  | f |
| ľ  |     | Ľ.  |            |    | ľ  | Ľ  | ľ |
| Ĥ  | -   |     |            | E. | H  | Ê  | ß |
| ť  | 1   |     |            | h  |    | h  | ľ |
|    |     |     |            |    |    | É  | ľ |
| 1  | -   | H   | 1          | H  | Ĥ  | H  | l |
|    |     |     |            |    |    |    |   |

| ĥ  | t  | -  | Н   | H   |    | H  |
|----|----|----|-----|-----|----|----|
|    | 2  |    | r   | 7   |    |    |
|    |    |    |     |     |    |    |
|    |    | H  | H   |     |    |    |
| 3  | N. | H  | H   | F   |    | -  |
| 1  | n. | T  | H   | 1   |    |    |
|    |    |    |     | -   |    |    |
|    | 5  |    | r.  | -   |    |    |
|    | 4  | -  | 1   |     | -  |    |
| Y  | H  | H  | H   | H   |    |    |
|    |    |    |     |     |    |    |
|    |    |    |     |     |    |    |
|    | -  | -  |     |     |    | _  |
|    | -  | -  | H   | H   |    | -  |
| 1  | ľ  | H  | H   |     |    | H  |
| ĺ  |    |    |     |     |    |    |
| ĺ  | Ľ  |    |     |     |    |    |
| ĺ  | H  | H  | H   |     |    | H  |
| Í  | H  | H  | H   | f   |    | H  |
| ĺ  |    |    |     |     |    |    |
| 1  |    |    |     |     |    |    |
| _  | -  | -  |     |     |    |    |
|    | -  | -  | -   | -   | -  | -  |
|    | H  | H  | H   | H   |    |    |
|    |    |    |     |     |    |    |
|    |    |    |     |     |    |    |
|    | -  |    |     |     |    | _  |
|    | -  | -  | H   | H   |    | -  |
|    |    |    | H   |     |    |    |
|    |    |    |     |     |    |    |
|    |    | -  | -   | -   | _  | -  |
|    | -  | -  | H   |     |    | -  |
|    |    |    |     |     |    |    |
|    |    |    |     |     |    |    |
| 1  | Ľ  |    |     |     |    |    |
|    | H  | H  | H   |     |    | H  |
| i  | H  | H  | H   |     |    | H  |
| Í  | ľ  |    |     | Ť   |    |    |
| ļ  | Į. |    |     |     |    |    |
| 1  | Ĥ  | Ľ. |     |     |    | H  |
| i  | H  | H  | H   |     |    | H  |
| Î  | f  | H  | H   |     |    | F  |
| Ĩ  |    |    |     |     |    |    |
| ļ  | Ľ  | Ľ. | Ľ,  |     |    |    |
| i  | H  | H  | H   | H   |    |    |
| i  | H  | H  | H   | H   | H  | H  |
| ĺ  |    |    |     |     |    |    |
| 1  | 1  |    |     |     |    |    |
| ĺ  | Ĥ  | Ē  | H   |     |    |    |
|    | H  | H  | H   |     |    | H  |
| ĺ  | t  | Ľ. | F.  | į,  |    |    |
| ĺ  | ľ  |    |     | Î   |    |    |
| -1 | 20 | 20 | с:П | с11 | 11 | 61 |

## LAGOON: Computational Details

| Method                             | WMLES                                                                         | DDES           |  |
|------------------------------------|-------------------------------------------------------------------------------|----------------|--|
| Irbulence Model /<br>Subgrid Scale | Vreman SGS                                                                    | SA EDDES       |  |
| Spatial / Time<br>Discretization   | JST ( $k^4 = 1/1024$ ) with implicit dual-time stepping (10 inner iterations) |                |  |
| Number of<br>Elements (1e6)        | 27                                                                            | 34             |  |
| First grid off the wall (mm)       | 0.01                                                                          | 0.6            |  |
| ime Step (1e-6 s)                  | 3                                                                             | 88             |  |
| Vall Time for 200<br>CTUs (hours)  | 29,094                                                                        | 43,480 (~1.5x) |  |

## LAGOON: Instantaneous Flow



## LAGOON: Surface Pressures

- Mean and RMS pressure on the wheel perimeter.
- Effect of not tripping the boundary layer on WMLES.
- Ongoing investigation of the difference in RMS levels between DDES and WMLES.
- PSD comparison on 2 regions of separated flow behind the wheel.



## LAGOON: Velocity Profiles



WMLES and DDES results show good agreement with exp. data near the wheel.



Experiments include mean and RMS data generated by laser Doppler velocimetry (LDV).

**DDES - Blue line** WMLES - Red line



## LAGOON: Velocity Flow Field

### Experimental Data





DDES

WMLES



## LAGOON: Farfield Acoustics

- PSDs are corrected for background noise, atmospheric absorption, and the effects of refraction through the open-jet wind tunnel.
- Good agreement with experiments up to 1.5kHz.
- OASPL (200Hz 10kHz) directivity noise PSD (Flyover position) computed with solidsurface FWH formulation.



 $\phi = 2.0 \text{m}$ 

## Conclusions and Future Work

- DDES and WMLES scale resolving simulations are now available in SU2. Feedback appreciated!
- Source code available in *feature\_WallModelLES* branch.
- Complete set of WMLES validation test cases include: turbulent channel, turbulent duct, NASA Hump and LAGOON.
- Future work:
  - Merge with *develop* branch for future release.
  - Ongoing simulations of the NASA Juncture Flow.

NASA Juncture Flow Experiment





## Acknowledgements

- Research carried out using the computational resources of the funded by FAPESP (grant 2013/07375-0)
- Aeronautics Institute of Technology (ITA)
- Embraer SA
- Boeing Brazil
- Dr. Eric Manoha (Onera) for providing the geometry and experimental data of the LAGOON case.

Center for Mathematical Sciences Applied to Industry (CeMEAI)

### Backup slides

## LAGOON: Velocity Flow Field

### Experimental Data

DDES

WMLES





