
Goal-Oriented Anisotropic Mesh
Adaptation in the SU2 Framework

Brian C. Munguía, Juan J. Alonso, and Adrien Loseille

SU2 Conference 2020

Overview
§ Motivation
§ Previous work
§ Anisotropic mesh adaptation
› Feature-based vs goal-oriented
› Metric spaces
› A priori error estimate

§ Implementation
› Adaptation framework
› Modifications to NS and SST solver
› SU2-AMG tutorial

§ Mesh adaptation results
› RAE 2822

§ Conclusions and future work

2

Motivation
§ Accuracy and robustness of high-fidelity analysis and design are highly

dependent on discretization
§ Mesh generation is a significant bottleneck in the CFD workflow

[CFD Vision 2030]

§ Physical phenomena are highly anisotropic in nature

3

Previous work
§ Grid adaptation for functional outputs using an a posteriori error estimate

[Venditti and Darmofal, 2000]

§ Development of a priori interpolation error estimates
[Formaggia and Perotto, 2001]

§ Continuous mesh framework with optimal metric for error control in 𝐋!-norm
[Alauzet et al., 2006]

§ A priori functional error estimate for 3D Euler equations and Spalart-Allmaras
[Loseille et al., 2010], [Frazza, 2018]

4

Previous work in SU2
§ Isotropic adaptation

[Palacios et al., 2012], [Copeland et al., 2013]

› Gradients
› Adjoint-weighted residuals

§ Feature-based anisotropic adaptation
[Loseille et al., 2016]

§ Goal-oriented adaptation for Euler
equations and TNE2
[Munguía et al., 2020]

› Adjoint-weighted error in fluxes and
chemical source terms

5

Feature-based vs goal-oriented adaptation
Feature-based

Best mesh to compute characteristics of a
solution 𝑢

𝑢 − Π!𝑢 "! #"

Goal-oriented
Best mesh to compute a functional 𝑓(𝑢)

𝑓(𝑢) − 𝑓 Π!𝑢 "! #"
6

Metric space
§ Linear elements → second-order interpolation error
§ Riemannian metric space given by Hessians, e.g. in 2D:

ℳ(𝒙) =
𝑢$$ 𝑢$%
𝑢%$ 𝑢%% = 𝑎 𝑏

𝑏 𝑐
§ Edge length in Euclidean metric space (i.e. ℳ constant in space):

𝑙ℳ' = 𝑠(ℳ𝑠ℎ' = 𝑎𝑥' + 2𝑏𝑥𝑦 + 𝑐𝑦' ℎ'

ℳ = ℛ
1/ℎ)' 0
0 1/ℎ''

ℛ(

§ Edge length in Riemannian metric space:

𝑙ℳ 𝒑𝒒 = ;
*

)
𝒑𝒒(ℳ 𝒑+ 𝑡𝒑𝒒 𝒑𝒒d𝑡

v1

`M (v1) = 1

v2

`M (v2) = 1

v

`M (v) = 1

�
R2, I2

�

e1

h1

e2

h2

�
R2,M

�

e1 1

e2

1M 1
2

M� 1
2

7

Discrete-continuous duality

8

Discrete Continuous
Element 𝐾 Metric tensor ℳ

Element volume 𝐾 𝑑#$ = detℳ 𝒙

Mesh 𝑋 of Ω% Riemannian metric space 𝐌 =ℳ(𝒙) of Ω
Number of vertices 𝑁 Complexity 𝒞 𝐌 = ∫& detℳ 𝒙 dΩ = 𝒩

Optimal metric
§ Minimize error in 𝐋'-norm for problem of dimension 𝑑:

ℳ𝐋! = 𝒩
)
* 3

&
det ℋ 𝒙

'
)'+* dΩ

#)*
det ℋ 𝒙 # $

)'+* ℋ 𝒙

1. Desired complexity
2. Global normalization
3. Local normalization

9

1 2 3

Free parameters: 𝒩 and 𝑝

Optimal metric
§ Choice of 𝑝 dictated by problem

› Larger 𝑝 damps small amplitude variations
› Previous work suggests 𝑝 = 1,2 for Euler, 𝑝 = 4 for RANS

[Frazza, 2018]

10

𝑝 = 1 𝑝 = 4

Inviscid error estimate
§ For Euler equations, can approximate error using flux and source differencing:

𝑅 𝑢 = ∇ ⋅ 𝐹 𝑢 − 𝑄 𝑢 = 0

𝛿𝑓 ≈ 3
"+
4𝑢# ∇ ⋅ 𝐹$ 𝑢 − ∇ ⋅ 𝐹 𝑢 − 𝑄$ 𝑢 − 𝑄 𝑢 dΩ$

§ Integrating by parts and neglecting boundary terms:
𝛿𝑓 ≈ 3

"+
∇4𝑢# 𝐹 𝑢 − 𝐹$ 𝑢 + 4𝑢# 𝑄 𝑢 −𝑄$ 𝑢 dΩ$

§ Adjoint-weighted Hessian:

ℋ 𝒙 =
𝜕4𝑢%
𝜕𝑥&

𝐻 𝐹& 𝑢% + 4𝑢% 𝐻 𝑄 𝑢%

§ OK results for Euler and TNE2, but doesn’t properly weigh errors due to gradients

11

Viscous error estimate
§ Approximate error by linearizing wrt conservative variables

𝛿𝑓 ≈ 3
"+
4𝑢'
𝜕𝑅
𝜕𝑢 𝑢 − 𝑢$ dΩ$

§ First we need to manipulate terms of the following forms:

12

𝑤4𝑢 # (𝑢 − 𝑢$)
Zeroth-order
e.g. source terms

𝑤4𝑢 # 𝜕 𝑢 − 𝑢$
𝜕𝑥&

First-order
e.g. convective terms

𝑤4𝑢 # 𝜕
(𝑢 − 𝑢$
𝜕𝑥&𝜕𝑥%

Second-order
e.g. viscous terms

Viscous error estimate
§ Neglecting boundary terms, we obtain the following form for viscous

terms:

3
&
𝑤9𝑢 , 𝜕

) 𝑢 − 𝑢%
𝜕𝑥-𝜕𝑥.

dΩ ≈3
&
𝑤

𝜕) 9𝑢
𝜕𝑥-𝜕𝑥.

,

𝑢 − 𝑢% dΩ

§ Weights 𝑤 obtained by linearizing governing equations
§ E.g. second-order energy error due to divergence of heat flux

∇)𝑇 =
1
𝜌𝑐/

[∇) 𝜌𝑐/𝑇 − 𝑐/𝑇∇)𝜌]

E𝐻01 = −
𝜆 + 𝜆2
𝜌𝑐/

9𝑢01 33
+ 9𝑢01 44

+ 9𝑢01 55

§ Adjoint-weighted Hessian:
ℋ 𝒙 = ̅𝐶6 + 𝐺̅6 + E𝐻6 𝐻(𝑢6)

13

Simplification for SST error estimate
§ Treat blending functions as constant

𝜙 = 𝐹)𝜙) + 1 − 𝐹) 𝜙)
𝐹) = tanh 𝑎𝑟𝑔)* , 𝐹(= tanh(𝑎𝑟𝑔(()

𝑎𝑟𝑔) = min max
𝑘

𝛽∗𝜔𝑑 ,
500𝜈
𝑑(𝜔 ,

4𝜌𝜎,(𝑘
𝐶𝐷-,𝑑(

𝑎𝑟𝑔(= max
2 𝑘
𝛽∗𝜔𝑑 ,

500𝜈
𝑑(𝜔

§ Don’t limit shear stress or production

𝜇. =
𝜌𝑘𝑎)

max 𝜔𝑎), Ω𝐹)

𝑃- = max 𝜏.,&%
𝜕𝑢&
𝜕𝑥%

, 20𝛽∗𝜌𝑘𝜔

§ Linearize all other terms, including viscosity and thermal conductivity

14

Modifications to NS and SST solver
§ Store conservative turbulent variables

› Adjoints in master/develop obtained wrt turbulent primitives
› Error estimate in terms of conservative primal and adjoint variables

§ Replace solution clipping with under-relaxation
§ Remove 𝜔 production limiter

𝑃7 =
𝛾
𝜈2
𝜏2,-.

𝜕𝑢-
𝜕𝑥.

15

Modifications to NS and SST solver
§ Use wall distance instead of “normal neighbor” distance in 𝜔 wall BC

𝜔9:;; =
60𝜈

𝛽$ Δ𝑑$)

§ Use over-relaxed gradient correction
› More stable on highly non-orthogonal meshes

[Jasak, 1996]

§ Include Jacobians of
› Green-Gauss gradients
› Production and cross-diffusion
› Laminar and eddy viscosity

16

Adaptation framework
§ SU2: Flow, adjoint, and metric computation
§ AMGIO: Conversion to and from GMF
§ pyAMG: Mesh adaptation and solution interpolation
§ “Stable” branch: feature_adap

17

Flow
solver

Adjoint
solver

Metric
computation

Mesh
generation

Running SU2-AMG
§ Currently limited to tri and tet meshes
§ Background surface mesh

› Fine representation of surface
› SU2 or GMF
› Defaults to initial mesh

§ Ridge detection
› Let AMG detect edges (3D)

and corners (2D)
› python script to append corners

based on intersection of markers

18

PYADAP_BACK= rae2822_fine.su2

PYADAP_RDG= NO

$ set_corner_points.py -f rae2822_rans.su2
NCORNERS= 2
1 0
1 512

Running SU2-AMG
§ Adaptation type

› Goal, Mach, or pressure
§ Target complexity
§ Iterations per mesh level
§ Norm

19

PYADAP_SENSOR= GOAL % MACH, PRES

PYADAP_COMPLEXITY= (30000, 60000, 120000)

PYADAP_NORM= 2.0

PYADAP_SUBITE= (5, 5, 5)

𝑝 = 2 𝑝 = 4

Running SU2-AMG
§ Maximum cell size
§ Minimum cell size

› Very important for RANS
§ Gradation parameter

› Max ratio of neighboring cell sizes

20
ℎ<=:* = 1.5 ℎ<=:* = 3.0

PYADAP_HMAX= 500.0

PYADAP_HMIN= 1.0E-6

PYADAP_HGRAD= 3.0

RAE 2822
§ 𝑀 = 0.729
§ 𝑅𝑒 = 6.5×10>

§ 𝛼 = 2.31∘

§ 𝑓 = 𝑐;
§ 𝒩 = 30000, 60000,

120000, 240000
§ ℎ@-A = 1.0×10#>

§ ℎ@:3 = 500
§ ℎ<=:* = 3.0

21

Initial mesh: 29996 points

RAE 2822

22

Exact solution extrapolated to ℎ = 0

RAE 2822 (𝑝 = 2)

23

𝑐'Final mesh: 83687 points

RAE 2822 (𝑝 = 2)

24

Mach numberFinal mesh: 83687 points

RAE 2822 (𝑝 = 2)

25

Mach numberFinal mesh: 83687 points

Conclusions
§ Implemented error estimate and goal-oriented mesh adaptation

› Euler
› TNE2

[Munguía et al., 2020]

› SST

§ Demonstrated ability to properly adapt for viscous, turbulent flows on
RAE 2822

§ Modifications to SST solver seem to have improved robustness on non-
orthogonal meshes

26

Future work
§ Thorough investigation of effects of adaptation parameters

› Norm
› Gradation

§ Implement error estimates for other models
› Spalart-Allmaras

› Incompressible
› Wall functions

§ CAD-based projection
§ Mesh-adaptive shape optimization

27

Acknowledgements
§ Victorien Menier

§ Loïc Frazza
§ Walter Maier
§ Jayant Mukhopadhaya
§ Marco Fossati

§ SU2 Development Team

28

