
Unit Testing in SU2:
Methodology and Philosophy

Clark Pederson

11 June, 2020

Department of Mechanical Engineering
The University of Texas at Austin

Why Unit Testing?

Introductory Questions

• What is a unit test?
• How do unit tests and validation tests differ?
• Aren’t validation tests sufficient?

Pederson, UT Austin Unit Testing 1

Foundational References

Pederson, UT Austin Unit Testing 2

Why Unit Tests?

“Code without tests is bad code. It doesn’t matter how well written it is; it doesn’t
matter how pretty or object-oriented or well-encapsulated it is. With tests, we
can change the behavior of our code quickly and verifiably. Without them, we
really don’t know if our code is getting better or worse.”

― Michael Feathers, Working Effectively with Legacy Code

Pederson, UT Austin Unit Testing 3

“Edit and Pray”

• Default way of programming
• We study the code, make sure
we understand the behavior,
and then make careful changes.

• We run the validation tests and
pray everything works.

https://www.caranddriver.com/features/a27438340/
cost-to-paint-car/

Pederson, UT Austin Unit Testing 4

https://www.caranddriver.com/features/a27438340/cost-to-paint-car/
https://www.caranddriver.com/features/a27438340/cost-to-paint-car/

Problems with “Edit and Pray”

• It would take a very long time to fully understand a codebase as big as SU2.
• Little, unintentional mistakes happen (such as forgetting a negative sign).
• Not all mistakes will immediately break the code.
• You spend a lot of time trying to understand the code, but future
programmers must do re-work to understand the code you wrote.

Pederson, UT Austin Unit Testing 5

“Cover and Modify”

• We cover the relevant code with
tests.

• We ensure that existing
behavior isn’t broken.

• We ensure that new behavior is
correct. https://www.caranddriver.com/features/a27438340/

cost-to-paint-car/

Pederson, UT Austin Unit Testing 6

https://www.caranddriver.com/features/a27438340/cost-to-paint-car/
https://www.caranddriver.com/features/a27438340/cost-to-paint-car/

Why Aren’t Validation Tests Sufficient?

Example 1
You’re developing a new feature and you want to test it to see if it works. You
could do a full simulation, but that takes a lot of time and computing power. You
want to check if your new code behaves correctly before you throw a lot of
resources at it.

Pederson, UT Austin Unit Testing 7

Why Aren’t Validation Tests Sufficient?

Example 2
You submit a PR and discover that one of the regression tests has failed.
But...why? You know that something is broken, but its hard to track down what
broke. You want more granular test coverage that can demonstrate what broke.

Pederson, UT Austin Unit Testing 8

Why Aren’t Validation Tests Sufficient?

Example 3
You are fixing a very small bug. You know that you should prove that your bug fix
worked, but it doesn’t seem logical to dedicate an entire validation case to one
small bug fix. You want to write a small test for a small fix.

Pederson, UT Austin Unit Testing 9

But I don’t have time to write tests...

• Hypothetical question: You just finished writing your code. If you had to
choose between finding a bug now and finding a bug in a year, which would
you choose?

• One study1 found that test-driven development increased development time
by 30%, but also decreased bugs by 21%.

1Williams, L., Kudrjavets, G., & Nagappan, N. (2009, November). On the effectiveness of unit test automation at Microsoft. In 2009 20th International
Symposium on Software Reliability Engineering (pp. 81-89). IEEE.

Pederson, UT Austin Unit Testing 10

How Do the Tests Work?

What is a unit-testing framework?

#include <iostream>

using std::cout;
using std::cin;

int Adder(int a, int b) {
return a + b;

}

int main() {
if (Adder(2, 2) != 4) {

cout << "Error: Test 'Addition is correct' failed!";
cout << endl;
cout << "Expected: " << 4 << endl;
cout << "Calculated: " << Adder(2, 2) << endl;
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}

#include "catch.hpp"

int Adder(int a, int b) {
return a + b;

}

TEST_CASE("Addition is correct", "[arithmetic]") {
REQUIRE(Adder(2, 2) == 4);

}

Pederson, UT Austin Unit Testing 11

Design Overview

• Catch2, the unit-testing framework, is included as a header file in the
externals folder.

• All the tests are placed in a top-level directory named UnitTests

• A single test executable is compiled and run.
• When ninja test or meson test is run, only a single success or failure is shown.
If the test driver ”failed”, then one or more unit tests failed.

• If more detail is needed, you can look at the logs or run the test driver
manually.

Pederson, UT Austin Unit Testing 12

Anatomy of a test

The header catch.hpp contains the macros used
for unit tests.
#include "catch.hpp"

int Adder(int a, int b) {
return a + b;

}

TEST_CASE("Addition is correct", "[arithmetic]") {
REQUIRE(Adder(2, 2) == 4);

}

REQUIRE() is similar to assert(). It checks that the
contained logical statement is true.

• TEST_CASE is a macro
used to define the test

• ”Addition is correct” is
the name

• ”[arithmetic]” is a tag

Pederson, UT Austin Unit Testing 13

Floating point arithmetic

#include "catch.hpp"
#include <math.h> // Defines atan, M_PI

TEST_CASE("Addition is correct", "[arithmetic]") {
float pi = atan(1.0)*4.0;
REQUIRE(pi == Approx(M_PI));

}

You can also customize the behavior of Approx:

• Approx(M_PI).epsilon(0.01) : A relative error of 1%
• Approx(M_PI).margin(0.01) : An absolute error of 0.01

Pederson, UT Austin Unit Testing 14

Minimal Working Example

Test File

Make a new file: SU2/UnitTests/tutorial.cpp
#include "catch.hpp"

int Adder(int a, int b) {
return a + b;

}

TEST_CASE("Addition is correct", "[arithmetic]") {
REQUIRE(Adder(2, 2) == 4);

}

Pederson, UT Austin Unit Testing 15

Adding to Build

Open SU2/UnitTests/meson.build and add your new test to su2_cfd_tests

Add any new test files here

Begin unit test listings

Direct-mode tests:
su2_cfd_tests = files(['Common/geometry/primal_grid/CPrimalGrid_tests.cpp',

'Common/geometry/dual_grid/CDualGrid_tests.cpp',
'SU2_CFD/numerics/CNumerics_tests.cpp',
'tutorial.cpp'])

Pederson, UT Austin Unit Testing 16

Compiling Unit Tests

Add the -Denable-tests=true flag to your meson configure call:
mkdir <builddir>
meson --prefix=<builddir> <builddir> -Denable-tests=true
ninja -C <builddir>

where builddir is the directory where you want to install SU2.

Pederson, UT Austin Unit Testing 17

Running Unit Tests: Method #1

Input:
meson test -C <builddir>

Output:
ninja: Entering directory <builddir>
ninja: no work to do.
1/1 Catch2 test driver OK 0.72 s

Ok: 1
Expected Fail: 0
Fail: 0
Unexpected Pass: 0
Skipped: 0
Timeout: 0

Full log written to <builddir>/meson-logs/testlog.txt

Pederson, UT Austin Unit Testing 18

Running Unit Tests: Method #2

Input:
ninja test -C <builddir>

Output:
ninja: Entering directory `/workspace/code/SU2/tutorial'
[0/1] Running all tests.
1/1 Catch2 test driver OK 0.27 s

Ok: 1
Expected Fail: 0
Fail: 0
Unexpected Pass: 0
Skipped: 0
Timeout: 0

Full log written to /workspace/code/SU2/tutorial/meson-logs/testlog.txt

Pederson, UT Austin Unit Testing 19

Running Unit Tests: Method #3

Input:
<builddir>/UnitTests/test_driver

Output:
===
All tests passed (12 assertions in 4 test cases)

Pederson, UT Austin Unit Testing 20

Which method to use?

The first two methods are simple.

The third method gives you the most options to control the test driver.

Pederson, UT Austin Unit Testing 21

Options: -s

Input:
<builddir>/UnitTests/test_driver -s

Output:

Addition is correct

../UnitTests/tutorial.cpp:7
...

../UnitTests/tutorial.cpp:8: PASSED:
REQUIRE(Adder(2, 2) == 4)

with expansion:
4 == 4

===
All tests passed (12 assertions in 4 test cases)

Pederson, UT Austin Unit Testing 22

Options: –list-tests

Input:
<builddir>/UnitTests/test_driver --list-tests

Output:
All available test cases:

Center of gravity computation
[Primal Grid]

Volume Computation
[Dual Grid]

NTS blending has a minimum of 0.05
[Upwind/central blending]

Addition is correct
[arithmetic]

4 test cases

Pederson, UT Austin Unit Testing 23

Options: Test Name

Input:
<builddir>/UnitTests/test_driver "Addition is correct"

Output:
Filters: Addition is correct
===
All tests passed (1 assertion in 1 test case)

Pederson, UT Austin Unit Testing 24

Options: Test Tag

Input:
<builddir>/UnitTests/test_driver "[arithmetic]"

Output:
Filters: [arithmetic]
===
All tests passed (1 assertion in 1 test case)

Pederson, UT Austin Unit Testing 25

Now lets make the test fail

Edit the file SU2/UnitTests/tutorial.cpp and replace 4 with 3.
#include "catch.hpp"

int Adder(int a, int b) {
return a + b;

}

TEST_CASE("Addition is correct", "[arithmetic]") {
REQUIRE(Adder(2, 2) == 3);

}

Pederson, UT Austin Unit Testing 26

Recompile and fail

Input:
ninja -C <builddir> test

Output:
1/1 Catch2 test driver FAIL 0.27 s (exit status 1)

Ok: 0
Expected Fail: 0
Fail: 1
Unexpected Pass: 0
Skipped: 0
Timeout: 0

The output from the failed tests:

1/1 Catch2 test driver FAIL 0.27 s (exit status 1)

Pederson, UT Austin Unit Testing 27

Running failing test driver

Input:
<builddir>/UnitTests/test_driver

Output:
Addition is correct

../UnitTests/tutorial.cpp:7
...

../UnitTests/tutorial.cpp:8: FAILED:
REQUIRE(Adder(2, 2) == 3)

with expansion:
4 == 3

===
test cases: 4 | 3 passed | 1 failed
assertions: 12 | 11 passed | 1 failed

Pederson, UT Austin Unit Testing 28

Lots More is Possible with Catch2

• Grouping tests into sections with similar setup or teardown
• Parameterized tests
• Logging context to report alongside failures
• Tests that are expected to throw exceptions
• Hiding tests from the default list
• Launching GDB post-mortem on failing tests
• Custom matchers

See the official Catch2 documentation for more details.

Pederson, UT Austin Unit Testing 29

Where to find more help

https://su2code.github.io/docs_v7/Running-Unit-Tests/
https://su2code.github.io/docs_v7/Writing-Unit-Tests/
https://github.com/catchorg/Catch2

Pederson, UT Austin Unit Testing 30

https://su2code.github.io/docs_v7/Running-Unit-Tests/
https://su2code.github.io/docs_v7/Writing-Unit-Tests/
https://github.com/catchorg/Catch2

Conclusions

“Remember, code is your house, and you have to live in it.”

― Michael Feathers, Working Effectively with Legacy Code

Pederson, UT Austin Unit Testing 31

	Why Unit Testing?
	How Do the Tests Work?
	Minimal Working Example

