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consider dynamic FSI optimization?

@ Increased flexibility next generation aircraft necessitates FSI

@ Static simulations informs baseline aerodynamic features, but dynamic events
often size the structure

@ Time-domain captures inherent instabilities and responses to external input
(flutter, LCOs, gust loads, etc)

(a) Zephyr (Image Credit: Airbus) (b) Gust-Load Alleviation (Image Credit:
Lancelot @ ICAST 2016)
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Optimization Framework

@ Built on native FSI solver in SU2
Baseline Geometry (lig Shape)

Update Geometry and Mesh or Material Property
@ Gradient based optimization for

shape or material properties

Primal Analysis (CMultizoneDriver)
Fluid Solver Mesh Solver

Structural Solver

@ Leverages existing AD-based
discrete adjoint solver for static
problems

Adjoint Analysis (CDiscAdjMultizoneDriver)
Adj Fluid Solver Adj Mesh Solver

Adj Structural Solver

@ CDiscAdjMultizoneDriver extended
for unsteady problems Con(\:IZ:gC:nce
o Supports multizone unsteady
adjoint sensitivities not exclusive
to FSI
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Primal Coupled FSI Solver

@ Fluid Solver - RANS in ALE formulation

0
%*V'FZLE*VF“*Q:O, w = {p, pv, pe}"
plv—2) _ 0
Fae=3 ovo(v—2)+Ip o, F'=4¢ T
pe(v—2z)+ pv T-v+uCVT

@ Structural Solver - Non-Linear Solid Mechanics

/o’:éddv—(/f~5udv+/ t~6uda>+/p5iidv—0
v v ov v

Internal External Inertial

@ Mesh Solver - Linear Elasticity
Knz —f(u)=0
@ Continuity of tractions and displacements at interface
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Unsteady FSI Discrete Adjoint Solver

@ To derive the adjoint equations, the optimization problem is written in
fixed-point iterators

N
H - n _n
min N Z u”,w" 2" a)
subject to (u u"twza)—u"=0, n=1,.,N,
( "wl w2 2" 2"t 2" 2 a) —w"=0, n=1,..,N,
M"(u",a)—2"=0, n=1,..,N
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Unsteady FSI Discrete Adjoint Equations

@ Taking the Lagrangian and differentiating with respect to the design variables
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Unsteady Fluid Discrete Adjoint Equations

@ Expression for the gradient of J

da da

n=

N
dJ dL Sh[10J7 388" _ 1 0G" 1 OM?
Z[N8a+(u) da (@) da @) aa}

@ Adjoint equations defined by

n n+1 i n
@) = G+ 2 | @) o] + @ G 0= N,

N du” ou” oun’

n n n+2 i
Ts:n+z{-' 2] e

194 asn T3 T 0G

o CoDiPack [Sagebaum, 2017] for Algorithmic Differentiation
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Numerical Results: FSI NACA 0012 Airfoil

@ NACA 0012 airfoil at Mach 0.8 with angle of attack of 8°, inviscid flow
@ Clamp at 20% chord, flexible airfoil with E = 70MPa

@ Hyper elastic Neo-Hookean material model
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Numerical Results: FSI NACA 0012 Airfoil

A dynamic process:
@ Flexible airfoil leads to upward displacement of the trailing edge

@ Resulting shape of the airfoil further accentuates the aerodynamic loading to
cause 20% upward displacement

@ Strengthened shock on the lower surface leads to a downward trailing edge
displacement
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Numerical Results: FSI NACA 0012 Airfoil

@ Undamped limit oscillations
@ Tip displacements up to 38% chord
@ Oscillating frequencies: tip displacement and lift at 11.3Hz
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Numerical Results: FSI NACA 0012 Airfoil

Gradient of average efficiency: % fOT g—édt
Design variables of FFD control points

Sensitivities for the initial response up to 1% tip displacement
p p p disp

Good agreement against finite differences using step size of Imm/c
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Conclusions

Discrete adjoint methodology for time-domain FSI
Shock-induced oscillations investigated in unsteady coupled FSI
Preliminary gradient validation with small displacements

Work in progress to extend to problems with geometric non-linearities

Future work on optimal design for passive gust-load alleviation
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