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Aeroacoustic Prediction Capabilities in SU2
Turbulent Flow Simulation

URANS, EDDES with Shear-Layer Adaptive SGS, WMLES, DG

Tandem Cylinder Landing Gear Turbulent Jet

Noise Propagation

Ffowcs Williams and Hawkings (FWH) Acoustic Analogy in ‘Wind-Tunnel Formulation’

Observer
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Validation: Tandem Cylinder Case from BANC-I Workshop

SU2 aeroacoustic prediction using
EDDES+FWH

Studied in a series of experiments
performed at NASA Langley.

a prototype for interaction problems
commonly encountered in airframe
noise, e.g., landing gear configuration.

Separation of turbulent boundary
layer.
Free shear layer roll-up.
Interaction of an unsteady wake of
the upstream with the downstream
cylinder.
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Unsteady Discrete Adjoint Framework

The discretized unsteady optimization problem over N time levels:

min
α

J = f (UN∗ , . . . ,UN , α)

subject to Un = Gn(Un,Un−1,Un−2, α), n = 1, . . . ,N

α: vector of design variables. J is evaluated between N∗ ≤ n ≤ N. One can express the
Lagrangian associated with the above constrained optimization problem as follows:

L = f (UN∗ , . . . ,UN , α) −
N∑

n=1

[(Ūn)T (Un − Gn(Un,Un−1,Un−2, α))]

Ūn: adjoint state vector at time level n.

∂L

∂Ūn
= 0, n = 1, . . . ,N (State equations)

KKT :
∂L

∂Un
= 0, n = 1, . . . ,N (Adjoint equations)

∂L

∂α
= 0, (Control equation)
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Unsteady Discrete Adjoint Framework

The unsteady discrete adjoint equations can be derived in the fixed point form as:

Ūn
i+1 =

(
∂Gn

∂Un

)T

Ūn
i +

(
∂Gn+1

∂Un

)T

Ūn+1 +

(
∂Gn+2

∂Un

)T

Ūn+2

︸ ︷︷ ︸
Ḡn(Ūn,Ūn−1,Ūn−2)

+

(
∂J

∂Un

)T

, n = N, . . . , 1

Ūn+1: converged adjoint state vector at time level n + 1
Ūn+2: converged adjoint state vector at time level n + 2

The unsteady adjoint equations above are solved backward in time.
The sensitivity gradient can be computed from the adjoint solutions:

dL

dα
=
∂J

∂α
+

N∑
n=1

((
Ūn
)T ∂Gn

∂α

)
High-lighted terms computed using Algorithmic Differentiation (AD) in reverse mode

Reverse accumulation used at each time level to ‘tape’ the computational graph for AD

G includes: turbulence model, grid movement, limiters, etc

Adjoint iterator Ḡ inherits the same convergence properties as primal iterator

AD implementation details see Albring et al. AIAA-2016-3518
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Coupled CFD-FWH Noise Prediction and Optimization Framework

Un=1, α CFD Solver FWH Solver J =
√

(p′)2
Un|Γp p′

Adjoint FWHAdjoint CFDdL
dα J̄ = 1

∂J
∂Un

∣∣ΓpUn

Ūn

Un|Γp

CFD Solver: Un = G n(Un,Un−1,Un−2)

FWH Solver: p′obs(~x , t) = p′T + p′L = Fn(U|Γp ,~x , t)

Adjoint CFD: Ūn = Ḡ n(Ūn, Ūn−1, Ūn−2) + ( ∂J
∂Un

∣∣Γp )T

Un|Γp : Flow variables at time step n on the FWH surface Γp

∂J
∂Un

∣∣Γp : sensitivity of the noise objective with respect to flow variables
evaluated on the FWH surface Γp

Beckett Y. Zhou An Overview of Aeroacoustic Prediction and Design Capabilities in SU2 6/ 11



Minimization of Rod-Airfoil Interaction Noise

NACA0012 airfoil section with
S = 0.5C placed at a distance
δ = 0.7C behind the cylinder

U∞ = 72m/s, Rec = 4.8× 105

Nearfield acoustic source computed
by URANS+SA

Propagation to 3 farfield microphone
positions (r = 100C , θ = 45◦, 90◦

and 135◦) using time-domain FWH.

JN = RMS(p′), averaged over 3 mic
positions

225 FFD design variables allow for
smooth morphing of airfoil section

Noise minimization performed to
determine optimal shape morphing of
the airfoil section to reduce
interaction noise
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Noise Minimization of a Rod-Airfoil Configuration

Surface Noise Sensitivity

x/c

y
/c

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

NACA0012

DSN1
DSN2

DSN3
DSN4

DSN5
Optimized

Design Evolution

 (deg)

OASPL (dB)

0

30

60

90

120

150

180

210

240

270

300

330

60 65 70 75 80 85 90

Baseline

Optimized

Overall Sound Pressure Level

Advantage of adjoint-based method: identification of regions of high design
sensitivities

Does not collapse the airfoil as one would expect

Optimizer introduces streamwise waviness on both upper and lower surfaces

No spanwise variation in surface sensitivities – coherent vortices impinging on
the airfoil LE due to URANS simulation

OASPL: omni-directional noise reduction, up to 6dB

Details in: AIAA-2017-3658
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Flap Side-Edge Broadband Noise Minimization

(1) Imamura et al. Numerical Simulation of NACA0012 Wingtip Flow Leading

to Noise Generation, AIAA-2005-2864

Broadband noise source modeled by
RANS + Stochastic Noise Generation
(SNG)

NACA0012 single element wing section
with round tip

Similar underlying noise generation
mechanism as that of flap side-edge

M∞ = 0.175 (V∞ = 60m/s)
Rec = 1.0 × 106

AoA = 12◦, AR ∼ 1.5

RANS solution computed with SST
k − ω turbulence model

SNG and sensitivities evaluated in the
tip region

Frequency range targeted in SNG: 1-10
kHz

Only allow geometry in tip region
(y ≥ 1.35C) to change

Details in: AIAA 2019-2697
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Flap Side-Edge Broadband Noise Minimization

Baseline TKE Optimized TKE

Baseline p′RMS Optimized p′RMS Farfield Noise Spectrum
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Current and Future Effort

Extend existing FWH implementation to full F1A for moving sources

NASA funded project aimed at developing adjoint-based noise minimization
capabilities for propeller and rotor configurations

Omur Icke, Andy Moy and Oktay Baysal (Old Dominion University)
Leonard V. Lopes (NASA Langley)
Beckett Y. Zhou (TU Kaiserslautern)
Boris Diskin (National Institute of Aerospace)

Currently implemented in V6; Integration with V7 this summer

Aeroacoustic Development ‘Wish List’

Advance-in-time method for FWH solver

Couple SU2-DG to solve LEE/APE for near-field propagation (duct acoustics)

Low-fidelity aeroacoustic models (e.g. Tam & Auriault model for jet noise)
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Aeroacoustic Prediction and Optimization in SU2
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