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| B.C.Khoo?

The aim of this work is to implement the modal analysis
platform for aeroelastic computation in the Open-Source
CFD Solver SU2 for the application of linear Reduced Or-
der Modelling (ROM). Although the current version of SU2
solver can handle periodic six degrees of freedom rigid move-
ment of a solid surface immersed in a compressible flow, it
cannot handle modal deflections or random excitations of
a three-dimensional wing. This limitation is addressed in
the present work in which the governing structural equa-
tions are assumed to be linear which implies that the mass
and stiffness matrix associated with the linear structural
equations is constant. To develop a linear reduced-order
model, the structural modes need to be computed first. The
CFD solver needs to be excited randomly using a Gaus-
sian noise function in all the modal directions to facilitate
the computation of the corresponding generalized aerody-
namic forces. A subspace identification based reduced model
is used for the construction of the linear reduced order mod-
els. The application of this approach on a clean wing of
aspect ratio 10 of a rectangular planform composed of a
NACA 0015 wing section is demonstrated for which SU2

source codes are modified to allow the wing to deform in
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the modal direction and generalized aerodynamic force vec-
tor is computed online for further application of linear re-

duced order model.
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1 | INTRODUCTION

Flexible aerodynamic components such as aircraft wings and control surfaces such as ailerons, flaps and slats undergo
complex fluid-structure interaction resulting in aeroelastic instabilities such as flutter and Limit Cycle Oscillation (LCO).
Reduced order modelling as outlined in Lucia et al. [1] has played a significant role in computational aeroservoelas-
ticity since the last decade and has been effective for facilitating quick prediction of flutter, gust load, LCO, shape
optimization, uncertainty propagation and various other issues which influence aerodynamic design. The Proper Or-
thogonal Decomposition (POD) method combined with the Galerkin projection approach is one of the most popular
linear intrusive ROM used in the aeroelastic community as demonstrated in Hall et al. [2] in which the POD/Galerkin
method is applied to unsteady transonic aerodynamics for flutter boundary computation by linearizing the governing
equations and projecting these on the POD basis for reduced order computation. The Harmonic Balance Method of
Thomas et al. [3] retains nonlinearity in the reduced system implying its effectiveness for computing the LCO. In this
approach, the flow variables are expressed as Fourier series which facilitates an efficient computation of the periodic
LCO. Among the non-intrusive ROMs, linear and nonlinear approaches are available for the flutter and LCO computa-
tion. The non-intrusive ROMs based on the Volterra theory by Silva et al. [4] and Balajewicz et al. [5], Neural Networks
approach by Mannarino et al. [6] and Kriging interpolation by Timme et al. [7] are used for the computation of nonlin-
ear aeroelastic phenomena like LCO. Likewise, there are several linear ROMs available in the non-intrusive platform.
For the flutter boundary computation, the Eigen System Realization (ERA) method of Juang and Pappa [8] computes
a linear state space system for the aerodynamics from the unit impulse response. The Subspace Identification based
approaches of Overschee and Moor [9] compute the linear systems from the statistically independent signals. Halder
et al. [10, 11], have shown nonintrusive linear and nonlinear reduced order model for two-dimensional airfoils for
aeroelastic computations in SU2 [12]. For a three dimensional wing, the excitation of the wing in the pitch and plunge
direction is not sufficient to compute the aerodynamic loads followed by reduced order model. Therefore, the wing
needs to be excited in the generalized coordinate to compute the generalized aerodynamic forces. The contribution
of the current work is the implementation procedure of the modal displacement of a wing immersed in compressible
flow to compute the generalized aerodynamic forces associated with the aeroelastic computation in open-source CFD
solver SU2.

2 | NUMERICAL METHODS

In this section, numerical methods for the fluid and structural solver will be discussed briefly to compute the high
fidelity training data for the aerodynamic loads which will be further used for the development of the linear reduced

order model.
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2.1 | Flow Equations

The aerodynamic flows for this work are computed using the open source CFD solver SU2 which solves the unsteady
compressible Navier-Stokes formulated on a mixed Eulerian or Arbitrary Lagrangian-Eulerian (ALE) reference frame.
This is used for both the high-fidelity model and the training signals computation for the ROM. The ALE equations of
the aerodynamic solver expressed in the weak formulation as

///med‘/+ j][[( FS p—F")A-dS=0in Qx[0,¢] (1)
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where W is the vector of flow variables, F¢, _ and F¥ are the convective and the diffusive terms respectively

ALE
defined as
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where p is the fluid density, v is the velocity vector, p is the pressure field. T is the temperature field.and E is total
energy per unit mass, 7 is the viscous stress tensor, Heor consists of both the laminar and turbulent viscosity, C, is the
specific heat. A vertex-centered finite volume approach is used for the discretization of the governing equations. A
spring analogy-based solver facilitates the mesh movement. The Geometric Conservation Law (GCL) is also enforced
in the solver. In the present work, the viscous effect is ignored and the unsteady Euler equation is considered for the
computation of the aerodynamic load.

2.2 | Structural Equations

The structural equations of motion of a three-dimensional wing model with n degrees of freedom and with aerody-

namic loads can be expressed as follows
d? dq

MTS"'CE‘FK‘]:F&HO (3)

where M, C, K are the structural mass, damping and stiffness matrices, g is a n x 1 column vector representing

the degrees of freedoms for each grid arising from the structural finite element model and F¢,, is the aerodynamic

force and moment vector which forms the applied loading. For this study, the structural damping is ignored i.e. C = 0.

To execute the general modal analysis to compute the natural frequencies and the corresponding mode shapes of the

configuration in the absence of the applied loading i.e. F,¢r0 = 0, a reduced form of Eqn. (3) is generated by assuming

a harmonic solution to permit amplitude changes while preserving the shape of the configuration. This assumption

results in the following equation i.e.
(k=AiM)¢; =0 )

where A; = “’/'2 is the it real eigenvalue, w; is the circular frequency of the harmonic motion and ¢; is the i/ real

eigenvector. Eqn. (4) is a set of homogeneous algebraic equations which are solved for the real eigenvalues for
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extracting the elastic modes by using the Lanczos method, and embodied in the SOL 103 algorithm in NASTRAN
[13] which is used to compute the generalized mass and stiffness matrices and the mode shape matrix ¢ formed by
combining the selected mode shape vectors i.e.

¢ = [d1.02, ... m] (5)

where m is the number of the selected natural modes. Normally, the first four to six fundamental modes i.e. m = 4
to 6 are sufficient for constructing the generalized mass and stiffness matrices in the modal reference frame. The
generalized mass matrix M, stiffness matrix K, and the generalized displacements vector n are computed as follows

¢ Mp=M
'K =K 6)
¢"q=n

and the equation to generate the unforced structural reduced-order model can then be formulated as

Mn+Rnp=0 @

3 | IMPLEMENTATION IN SU2

In the current work, an open-source SU2 solver is used for the computation of the aerodynamic load. Since the linear
structural equation is used for the aeroelastic computation, a third party structural solver NASTRAN is used, and the
generalized mass and stiffness matrices are only conveyed to the SU2 based fluid solver. As implied in Egn. (3), the
structural equation and the fluid equation is projected on the generalized coordinates G . The mode shapes from Eqgn.
(7) are interpolated in a MATLAB [14] platform using the polynomial interpolations as follows

z= Z = Coeﬂ-jxiyj (8)
i=k,...0j=0,...k

where z is the interpolated mode shape, Coef;; is the interpolation coefficient and x and y are the coordinates
of the wing relative to a Cartesian coordinate system and k is the degree of the polynomial for the interpolation. The
interpolation coefficient is added to the SU2 solver so that the aerodynamic surface moves in the modal directions
instead of the rigid transformations following which the aerodynamic force and moments are computed in the force
computation solver of SU2. For the computation of the generalized aerodynamic forces only the z directional force
Faero.z is considered. The solver is modified by multiplying with the basis vectors ¢ and the generalized aerodynamic

forces (GAF) are computed as follows

GAF; = @i(x,y) X Faeroz (x,y) = Coef,jxjyj X Faeroz(X,¥) 9)
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FIGURE 1 (a) Implementation in SU2 (b) Modification of the SU2 solver (Mesh
movement solver and the Force computation solver)

The modification of the SU2 solver is shown in Fig. 1 and it shows that the generalized coordinate  is computed
in the grid movement solver and the generalized aerodynamic forces are computed in the force computation solver
inside SU2. The modification of the source codes and reduced order model codes are made available for public use in
the GitHub link https:/github.com/rahulhalderAERO.

A linear aerodynamic ROM as described by the following equation which is generated from the input random
structural excitation and corresponding output GAF forces.

n+l _ n n
Xge = AXge + Bu

(10)
y™ =cCx?, + Du"

where the constant matrices A, B, C and D are used to approximate the aerodynamic system . The detail s of the
algorithmic steps of the constant system matrices formulation are described in Overschee and Moor [10]. v and y are

input and output vectors and x,. is the aerodynamic state vector.

4 | RESULTS AND DISCUSSIONS

This section discusses the implementation of the modal analysis platform for the aeroelastic analysis in SU2 for the
application of the linear ROM of aerodynamic loads. The structural wing modes are first computed in the NASTRAN

platform and the wing surface is excited randomly in the modal direction to compute the training aerodynamic loads
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TABLE 1 Geometrical and Material properties of wing.

Geometrical Prop. values Material Prop. values
Wingspan 45m Mass of Wing 2.1392 kg
Wing Root Chord 0.65m Young's Modulus E1 3.1511 GPa
Wing Tip Chord 0.25m Young’s Modulus E2 0.4162 GPa
Wing Section Semi-Chord 0.45m Shear Modulus G 0.4392 GPa
Sweep-back Angle 0 Poisson Ratio 0.31
Wing Section NACA0015 Density 381.98 kg/m?>

subsequently. The subspace identification based linear reduced order model is then further applied on the training

data set for quick prediction of generalized aerodynamic load under any structural input excitation.

4.1 | Generation of the Structural Mode

The structural equations are solved in NASTRAN platform which is one of widely used structural analysis packages
used by many researchers for various applications. The modal analysis platform is demonstrated in this section by
considering an application to a high aspect ratio rectangular planform wing consisting of a NACA 0015 wing section,
the geometrical and material properties of which are shown in Table 1. A tapered wing of aspect ratio 10 with a root
chord of 0.65 and a tip chord of 0.25 is considered for the present computation.

The structural modes ¢ as shown in Egn. (5) are interpolated using a fifth order polynomial function in MATLAB
as shown in Figure 2. The R? fit of the interpolation is considered 0.99 for all the structural modes as defined by the

following Eqn.

_ \/Z (}’predicted = Ytruth)

V 2 (Yerutn)

RZfit=1 (11)

Figure 2(a), 2(b) and 2(c) show the first bending , second bending and third bending mode respectively and Figure
2(d) shows the torsional mode. In Fig. 2(a) to (d) , the black dots of each image show the actual wing mode to be
interpolated and the coloured part is the surface obtained from polynomial interpolation using the coordinates of the
black dots.

The coefficients of the polynomial function shown in Eqn.(8) are then conveyed to the flow solver in SU2 to excite

the wing in the modal directions which will be discussed below.

4.2 | Excitation of the Aerodynamic Surface in the Modal Directions

The wing surface is excited in the modal directions as shown in Figure 2 (a)-(d) and the corresponding generalized
aerodynamic forces are computed using Eqn. (9) and as indicated in Fig. 1. First, the aerodynamic surface is excited
randomly in the modal directions to generate the training dataset for the reduced order model and then excited
with the sinusoidal input for the validation of the effectiveness of the reduced order model. For both random and

sinusoidal excitation, the predicted GAFs are compared with the CFD based result. The wing deflections as a result of
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FIGURE 2 Interpolation of the structural modes in the MATLAB platform (a)
First Mode (b) Second Mode (c) Third Mode and (d) Fourth Mode.

the sinusoidal excitation of the aerodynamic surface in the modal directions (modes | and 1) with a structural input of
0.1sin(50t) are shown in Fig. 3. Figure 3(a) and 3(b) show the first and second mode respectively corresponding to the
state excited at the peak of the sinusoidal excitation in each cycle. The computed wing surface Cp contours are shown
at the excited location. To develop a linear reduced order model, the wing is now excited in the mode | direction under
a random noise and generalized aerodynamic forces GAF1 and GAF2 are computed. Similarly, the wing is excited in
the mode Il direction under a different set of Gaussian noise and the generalized aerodynamic forces GAF1 and GAF2
are computed under those excitations. The generalized forces GAF1 and GAF2 under the excitation in mode | and
mode Il directions are finally added to compute the total GAF1 and GAF2 which will be used for the development of
the linear ROM. Figure 4 shows the temporal variation of GAF1 and GAF2 under the combined excitation of the wing

in the mode | and mode Il direction. The number of states considered in the subspace identification algorithm is 15.

Since the number of inputs and outputs is 2, the size of the A matrix as shown in Eqn. (10) is R3%<30, Since Eqn.
(10) describes a discrete system and therefore the eigen distribution of constant matrix A should lie in the unit circle
for the linear system to be stable. Figure 5 shows the stable eigenvalue distribution of the system matrix A.Figures
6(a)-(b) compares the linear ROM prediction of the GAF1 and GAF2 under random excitation in mode | while Figs.

6(c)-(d) compares the same for excitation in the mode Il directions with predictions from CFD models. For better



Halder et al.

Pressure.

>_Coefficient
-6.7e01 04 02 0 02 04 0.6
I

) i ; N 015 1122400 Pressure_Coefficient
47601 04 02 0 02 04 .
) I I | i }

(@) (b)

FIGURE 3 The wing deflected at the maximum sinusoidal location under (a)
first and (b) second mode excitation.
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FIGURE 4 Generalized aerodynamic force (a) GAF1 and (b) GAF2 under
combined mode | and mode Il interaction.

visualization of the ROM application, the comparison is shown only for the window of the time ¢ between 0.2 and
0.3 s. The linear aerodynamic ROM is then used to compute the aerodynamic forces under sinusoidal excitation of
0.01sin (50 t). Figures 7(a)-(b) shows the comparison of GAF1 and GAF2 under the sinusoidal excitation of mode |.
Figure 7(c) and 7(d) shows the comparison of GAF1 and GAF2 under the sinusoidal excitation of mode II.
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FIGURE 5 Eigenvalue distribution of the stable A matrix arising from the linear
system developed for the wing aerodynamics.
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FIGURE 6 (a) GAF1 and (b) GAF2 under mode | excitation (c) GAF1 and (d)
GAF2 under mode Il excitation randomly.
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5 | CONCLUSIONS

This work describes the implementation details of the modal excitation of an aircraft wing undergoing arbitrary motion
in the modal coordinates instead of a rigid transformation in the SU2 solver and therefore, this development is very
essential for aeroelastic computations. The work shows that polynomial functions of order five are sufficient for the
interpolation of the structural modes and a fit value of 0.99 can be attained. The subspace identification based linear
ROM can be applied to reconstruct the generalised aerodynamic forces. This effort shows that existing SU2 codes can
be modified to handle the modal deformations of a wing which has a significant importance in aeroelastic applications.
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