
SU2-Turbo WG

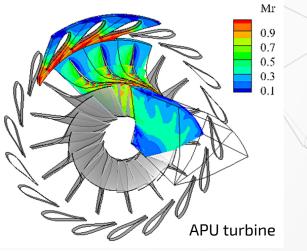
A brief overview on the (new) turbomachinery working group of the SU2 community

Mission and and Objectives

foundation

Mission: Incentivize cooperation and cross-fertilization, and be a gateway to open turbomachinery knowledge

Objectives: Coordinate the development of the **turbo-kernel** Create and maintain a set of relevant test cases Establish a forum to exchange ideas/solve issues Provide up-to-date information to the community


Affiliated Institutions & Members

- Coordinator: M. Pini (TU-Delft)
- Initial members
 - Imperial College
 - Universidad Politecnica de Madrid
 - Tsinghua University
 - Liverpool University
 - Cenaero
 - TU-Delft

Turbo Features (SU2 v7.X)

- Non-reflecting boundary conditions
- Mixing-plane and frozen-rotor interface
- Sliding plane for unsteady computations (even pitches)
- Test cases:
 - Axial turbine stage (2D)
 - APU turbine (3D)

Roadmap – Short Term Goals

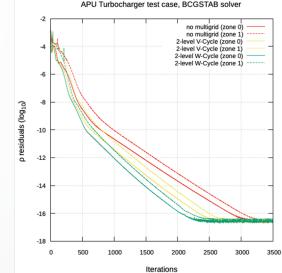
- Merge in develop turbo features available in branches for steady/unsteady flow simulations
- Create set of new V&V test cases:
 - Axial compressors: TUDa-GLR-OpenStage & NASA Stage-35
 - Radial compressors: Eckhardt O & MTU-Radiver
 - Axial turbines: Aachen turbine
 - Radial turbines: ORCHID turbine
- **Tutorials:** NASA Stage-35 & MTU-Radiver

ORCHID turbine, TU-Delft

Roadmap – Long Term Goals

Numerics

- Improve solver efficiency (e.g., Jacobians, Newton-Krylov)
- Improve multi-grid capability
- Revamp/improve non-linear harmonic balance solver


Physics

- High-fidelity: hybrid RANS/LES, LES
- Aero-thermo-mechanics

Design

foundation

- Unsteady adjoints
- **SUP** Multi-row, multi-point, multi-disciplinary

